
## Andrew J Racher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8400129/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A proline metabolism selection system and its application to the engineering of lipid biosynthesis in Chinese hamster ovary cells. Metabolic Engineering Communications, 2021, 13, e00179.                                                              | 3.6 | 8         |
| 2  | Engineering of Chinese hamster ovary cell lipid metabolism results in an expanded ER and enhanced recombinant biotherapeutic protein production. Metabolic Engineering, 2020, 57, 203-216.                                                              | 7.0 | 29        |
| 3  | Data for engineering lipid metabolism of Chinese hamster ovary (CHO) cells for enhanced recombinant protein production. Data in Brief, 2020, 29, 105217.                                                                                                | 1.0 | 4         |
| 4  | Tracking the physical stability of fluorescent-labeled mAbs under physiologic in vitro conditions in human serum and PBS. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 152, 193-201.                                                   | 4.3 | 11        |
| 5  | Intact-Cell MALDI-ToF Mass Spectrometry for the Authentication of Drug-Adapted Cancer Cell Lines.<br>Cells, 2019, 8, 1194.                                                                                                                              | 4.1 | 3         |
| 6  | Improving the accuracy of flux balance analysis through the implementation of carbon availability constraints for intracellular reactions. Biotechnology and Bioengineering, 2019, 116, 2339-2352.                                                      | 3.3 | 26        |
| 7  | Implementation of Plate Imaging for Demonstration of Monoclonality in Biologics Manufacturing<br>Development. PDA Journal of Pharmaceutical Science and Technology, 2018, 72, 438-450.                                                                  | 0.5 | 7         |
| 8  | Comparison of spectroscopy technologies for improved monitoring of cell culture processes in miniature bioreactors. Biotechnology Progress, 2017, 33, 337-346.                                                                                          | 2.6 | 36        |
| 9  | Extraction of indirectly captured information for use in a comparison of offline pH measurement technologies. Journal of Biotechnology, 2017, 251, 160-165.                                                                                             | 3.8 | 2         |
| 10 | Methionine sulfoximine supplementation enhances productivity in GS–CHOK1SV cell lines through glutathione biosynthesis. Biotechnology Progress, 2017, 33, 17-25.                                                                                        | 2.6 | 16        |
| 11 | Diversity in host clone performance within a Chinese hamster ovary cell line. Biotechnology<br>Progress, 2015, 31, 1187-1200.                                                                                                                           | 2.6 | 33        |
| 12 | Building a Cell Culture Process with Stable Foundations: Searching for Certainty in an Uncertain<br>World. Cell Engineering, 2015, , 373-406.                                                                                                           | 0.4 | 5         |
| 13 | Rapid high-throughput characterisation, classification and selection of recombinant mammalian cell<br>line phenotypes using intact cell MALDI-ToF mass spectrometry fingerprinting and PLS-DA modelling.<br>Journal of Biotechnology, 2014, 184, 84-93. | 3.8 | 46        |
| 14 | Functional heterogeneity and heritability in CHO cell populations. Biotechnology and Bioengineering, 2013, 110, 260-274.                                                                                                                                | 3.3 | 88        |
| 15 | The use of glutamine synthetase as a selection marker: recent advances in Chinese hamster ovary cell<br>line generation processes. Pharmaceutical Bioprocessing, 2013, 1, 487-502.                                                                      | 0.8 | 31        |
| 16 | Does earlier use of productivity enhancers during cell line selection lead to the identification of more productive cell lines?. BMC Proceedings, 2011, 5, P9.                                                                                          | 1.6 | 0         |
| 17 | Impact of gene vector design on the control of recombinant monoclonal antibody production by chinese hamster ovary cells. Biotechnology Progress, 2011, 27, 1689-1699.                                                                                  | 2.6 | 31        |
| 18 | An empirical modeling platform to evaluate the relative control discrete CHO cell synthetic processes exert over recombinant monoclonal antibody production process titer. Biotechnology and Bioengineering, 2011, 108, 2193-2204.                      | 3.3 | 19        |

Andrew J Racher

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Report and recommendation of a workshop on education and training for measurement, monitoring,<br>modelling and control (M <sup>3</sup> C) in biochemical engineering. Biotechnology Journal, 2010, 5,<br>359-367.                           | 3.5  | 4         |
| 20 | Strategies for selecting Recombinant CHO cell lines for cGMP manufacturing: Realizing the potential in bioreactors. Biotechnology Progress, 2010, 26, 1446-1454.                                                                             | 2.6  | 43        |
| 21 | Strategies for selecting recombinant CHO cell lines for cGMP manufacturing: Improving the efficiency of cell line generation. Biotechnology Progress, 2010, 26, 1455-1464.                                                                   | 2.6  | 59        |
| 22 | Cell lineâ€specific control of recombinant monoclonal antibody production by CHO cells.<br>Biotechnology and Bioengineering, 2010, 106, 938-951.                                                                                             | 3.3  | 90        |
| 23 | Rapid whole monoclonal antibody analysis by mass spectrometry: An Ultra scaleâ€down study of the effect of harvesting by centrifugation on the postâ€translational modification profile. Biotechnology and Bioengineering, 2010, 107, 85-95. | 3.3  | 55        |
| 24 | Metabolic Rates, Growth Phase, and mRNA Levels Influence Cell-Specific Antibody Production Levels<br>from In Vitro-Cultured Mammalian Cells at Sub-Physiological Temperatures. Molecular<br>Biotechnology, 2008, 39, 69-77.                  | 2.4  | 48        |
| 25 | On the Optimal Ratio of Heavy to Light Chain Genes for Efficient Recombinant Antibody Production by<br>CHO Cells. Biotechnology Progress, 2008, 21, 122-133.                                                                                 | 2.6  | 183       |
| 26 | Dynamic analysis of GS-NSO cells producing a recombinant monoclonal antibody during fed-batch culture. Biotechnology and Bioengineering, 2007, 97, 410-424.                                                                                  | 3.3  | 45        |
| 27 | Control of Culture Environment for Improved Polyethylenimine-Mediated Transient Production of Recombinant Monoclonal Antibodies by CHO Cells. Biotechnology Progress, 2006, 22, 753-762.                                                     | 2.6  | 93        |
| 28 | On the statistical analysis of the CS-NS0 cell proteome: Imputation, clustering and variability testing.<br>Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 1179-1187.                                                  | 2.3  | 10        |
| 29 | Antibody production. Advanced Drug Delivery Reviews, 2006, 58, 671-685.                                                                                                                                                                      | 13.7 | 462       |
| 30 | Functional proteomic analysis of GS-NSO murine myeloma cell lines with varying recombinant monoclonal antibody production rate. Biotechnology and Bioengineering, 2006, 94, 830-841.                                                         | 3.3  | 76        |
| 31 | Proteomic analysis of enriched microsomal fractions from GS-NSO murine myeloma cells with varying secreted recombinant monoclonal antibody productivities. Proteomics, 2005, 5, 4689-4704.                                                   | 2.2  | 48        |
| 32 | Comparative proteomic analysis of GS-NSO murine myeloma cell lines with varying recombinant monoclonal antibody production rate. Biotechnology and Bioengineering, 2004, 88, 474-488.                                                        | 3.3  | 120       |
| 33 | Evaluation of individual protein errors in silver-stained two-dimensional gels. Biochemical and Biophysical Research Communications, 2003, 306, 1050-1055.                                                                                   | 2.1  | 28        |
| 34 | Effect of viscosity upon hydrodynamically controlled natural aggregates of animal cells grown in stirred vessels. Biotechnology Progress, 1995, 11, 575-583.                                                                                 | 2.6  | 48        |
| 35 | Culture of 293 cells in different culture systems: Cell growth and recombinant adenovirus production. Biotechnology Letters, 1995, 9, 169-174.                                                                                               | 0.5  | 14        |
| 36 | Use of the Glutamine Synthetase (GS) Expression System for the Rapid Development of Highly<br>Productive Mammalian Cell Processes. , 0, , 809-832.                                                                                           |      | 10        |