
Xiao-Yang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8399507/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RNALocate v2.0: an updated resource for RNA subcellular localization with increased coverage and annotation. Nucleic Acids Research, 2022, 50, D333-D339.	14.5	54
2	ViRBase v3.0: a virus and host ncRNA-associated interaction repository with increased coverage and annotation. Nucleic Acids Research, 2022, 50, D928-D933.	14.5	16
3	RNAPhaSep: a resource of RNAs undergoing phase separation. Nucleic Acids Research, 2022, 50, D340-D346.	14.5	18
4	Association between single nucleotide polymorphism of rs1937 in TFAM gene and longevity among the elderly Chinese population: based on the CLHLS study. BMC Geriatrics, 2022, 22, 16.	2.7	3
5	Engineered Cas12a-Plus nuclease enables gene editing with enhanced activity and specificity. BMC Biology, 2022, 20, 91.	3.8	15
6	BMP4 drives primed to na $ ilde{A}$ ve transition through PGC-like state. Nature Communications, 2022, 13, 2756.	12.8	2
7	Sheng-Mai Yin exerts anti-inflammatory effects on RAW 264.7 cells and zebrafish. Journal of Ethnopharmacology, 2021, 267, 113497.	4.1	19
8	Cellinker: a platform of ligand–receptor interactions for intercellular communication analysis. Bioinformatics, 2021, 37, 2025-2032.	4.1	47
9	Deciphering the autophagy regulatory network via single-cell transcriptome analysis reveals a requirement for autophagy homeostasis in spermatogenesis. Theranostics, 2021, 11, 5010-5027.	10.0	19
10	MiniCAFE, a CRISPR/Cas9-based compact and potent transcriptional activator, elicits gene expression <i>inÂvivo</i> . Nucleic Acids Research, 2021, 49, 4171-4185.	14.5	28
11	Inhibition of Syk promotes chemical reprogramming of fibroblasts via metabolic rewiring and H ₂ S production. EMBO Journal, 2021, 40, e106771.	7.8	15
12	The chromatin accessibility landscape reveals distinct transcriptional regulation in the induction of human primordial germ cell-like cells from pluripotent stem cells. Stem Cell Reports, 2021, 16, 1245-1261.	4.8	14
13	CellCall: integrating paired ligand–receptor and transcription factor activities for cell–cell communication. Nucleic Acids Research, 2021, 49, 8520-8534.	14.5	102
14	Vangl2 limits chaperone-mediated autophagy to balance osteogenic differentiation in mesenchymal stem cells. Developmental Cell, 2021, 56, 2103-2120.e9.	7.0	20
15	The histone demethylase KDM2B regulates human primordial germ cell-like cells specification. International Journal of Biological Sciences, 2021, 17, 527-538.	6.4	4
16	Cell-fate transition and determination analysis of mouse male germ cells throughout development. Nature Communications, 2021, 12, 6839.	12.8	31
17	Generation of Stable Induced Pluripotent Stem-like Cells from Adult Zebra Fish Fibroblasts. International Journal of Biological Sciences, 2019, 15, 2340-2349.	6.4	22
18	Mitochondrial Dynamics Is Critical for the Full Pluripotency and Embryonic Developmental Potential of Pluripotent Stem Cells. Cell Metabolism, 2019, 29, 979-992.e4.	16.2	72

XIAO-YANG ZHAO

#	Article	IF	CITATIONS
19	Efficient generation of human primordial germ cell-like cells from pluripotent stem cells in a methylcellulose-based 3D system at large scale. PeerJ, 2019, 6, e6143.	2.0	12
20	Single-Cell RNA Sequencing Analysis Reveals Sequential Cell Fate Transition during Human Spermatogenesis. Cell Stem Cell, 2018, 23, 599-614.e4.	11.1	309
21	Accreditation of Biosafe Clinical-Grade Human Embryonic Stem Cells According to Chinese Regulations. Stem Cell Reports, 2017, 9, 366-380.	4.8	40
22	Rat embryonic stem cells produce fertile offspring through tetraploid complementation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11974-11979.	7.1	15
23	Gamete differentiation from pluripotent stem cells. National Science Review, 2017, 4, 525-528.	9.5	1
24	Mitochondrial complex I deficiency leads to the retardation of early embryonic development in <i>Ndufs4</i> knockout mice. PeerJ, 2017, 5, e3339.	2.0	9
25	Treatment of multiple sclerosis by transplantation of neural stem cells derived from induced pluripotent stem cells. Science China Life Sciences, 2016, 59, 950-957.	4.9	40
26	ATG3-dependent autophagy mediates mitochondrial homeostasis in pluripotency acquirement and maintenance. Autophagy, 2016, 12, 2000-2008.	9.1	79
27	Autotetraploid cell Line induced by SP600125 from crucian carp and its developmental potentiality. Scientific Reports, 2016, 6, 21814.	3.3	13
28	Generation and Application of Mouse-Rat Allodiploid Embryonic Stem Cells. Cell, 2016, 164, 279-292.	28.9	46
29	Complete Meiosis from Embryonic Stem Cell-Derived Germ Cells InÂVitro. Cell Stem Cell, 2016, 18, 330-340.	11.1	327
30	Immunogenicity and functional evaluation of iPSC-derived organs for transplantation. Cell Discovery, 2015, 1, 15015.	6.7	12
31	Germline acquisition of Cas9/RNA-mediated gene modifications in monkeys. Cell Research, 2015, 25, 262-265.	12.0	32
32	Durable pluripotency and haploidy in epiblast stem cells derived from haploid embryonic stem cellsin vitro. Journal of Molecular Cell Biology, 2015, 7, 326-337.	3.3	19
33	Derivation of a Homozygous Human Androgenetic Embryonic Stem Cell Line. Stem Cells and Development, 2015, 24, 2307-2316.	2.1	12
34	Generation of fertile offspring from Kitw/Kitwv mice through differentiation of gene corrected nuclear transfer embryonic stem cells. Cell Research, 2015, 25, 851-863.	12.0	17
35	Derivation of Non-Integration Induced Pluripotent Stem Cells from Fibroblast of Severe Deafness Patients with GJB2 Mutation. Journal of Genetics and Genomics, 2015, 42, 455-458.	3.9	1
36	One-step generation of p53 gene biallelic mutant Cynomolgus monkey via the CRISPR/Cas system. Cell Research, 2015, 25, 258-261.	12.0	91

XIAO-YANG ZHAO

#	Article	IF	CITATIONS
37	Generation of Gene-Modified Cynomolgus Monkey via Cas9/RNA-Mediated Gene Targeting in One-Cell Embryos. Cell, 2014, 156, 836-843.	28.9	930
38	RNA Guided Genome Editing in Mouse Germ-Line Stem Cells. Journal of Genetics and Genomics, 2014, 41, 409-411.	3.9	1
39	Generation of tetraploid complementation mice from embryonic stem cells cultured with chemical defined medium. Science Bulletin, 2014, 59, 2743-2748.	1.7	2
40	Genetic Modification and Screening in Rat Using Haploid Embryonic Stem Cells. Cell Stem Cell, 2014, 14, 404-414.	11.1	85
41	Atg7 is required for acrosome biogenesis during spermatogenesis in mice. Cell Research, 2014, 24, 852-869.	12.0	213
42	Derivation of androgenetic embryonic stem cells from m-carboxycinnamic acid bishydroxamide (CBHA) treated androgenetic embryos. Science Bulletin, 2013, 58, 2862-2868.	1.7	2
43	Generation of Transgenic Rats through Induced Pluripotent Stem Cells. Journal of Biological Chemistry, 2013, 288, 27150-27158.	3.4	10
44	Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature, 2012, 490, 407-411.	27.8	149
45	Cloning efficiency following ES cell nuclear transfer is influenced by the methylation state of the donor nucleus altered by mutation of DNA methyltransferase 3a and 3b. Frontiers in Biology, 2010, 5, 439-444.	0.7	2
46	Viable Fertile Mice Generated from Fully Pluripotent iPS Cells Derived from Adult Somatic Cells. Stem Cell Reviews and Reports, 2010, 6, 390-397.	5.6	48
47	Efficient and rapid generation of induced pluripotent stem cells using an alternative culture medium. Cell Research, 2010, 20, 383-386.	12.0	27
48	Production of mice using iPS cells and tetraploid complementation. Nature Protocols, 2010, 5, 963-971.	12.0	37
49	Derivation of embryonic stem cells from Brown Norway rats blastocysts. Journal of Genetics and Genomics, 2010, 37, 467-473.	3.9	21
50	iPS cells produce viable mice through tetraploid complementation. Nature, 2009, 461, 86-90.	27.8	737