Bruce A Roundy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8399363/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	WHAT MAKES GREAT BASIN SAGEBRUSH ECOSYSTEMS INVASIBLE BYBROMUS TECTORUM?. Ecological Monographs, 2007, 77, 117-145.	5.4	495
2	Resilience and Resistance of Sagebrush Ecosystems: Implications for State and Transition Models and Management Treatments. Rangeland Ecology and Management, 2014, 67, 440-454.	2.3	195
3	Understory Cover Responses to Piñon–Juniper Treatments Across Tree Dominance Gradients in the Great Basin. Rangeland Ecology and Management, 2014, 67, 482-494.	2.3	91
4	Piñon–Juniper Reduction Increases Soil Water Availability of the Resource Growth Pool. Rangeland Ecology and Management, 2014, 67, 495-505.	2.3	87
5	Response of Conifer-Encroached Shrublands in the Great Basin to Prescribed Fire and Mechanical Treatments. Rangeland Ecology and Management, 2014, 67, 468-481.	2.3	73
6	Prediction of Cheatgrass Field Germination Potential Using Wet Thermal Accumulation. Rangeland Ecology and Management, 2007, 60, 613-623.	2.3	65
7	Weather-Centric Rangeland Revegetation Planning. Rangeland Ecology and Management, 2018, 71, 1-11.	2.3	62
8	Assessment of Range Planting as a Conservation Practice. Rangeland Ecology and Management, 2016, 69, 237-247.	2.3	52
9	Fire Rehabilitation Using Native and Introduced Species: A Landscape Trial. Rangeland Ecology and Management, 2006, 59, 237-248.	2.3	49
10	Germination of Warm-Season Grasses under Constant and Dynamic Temperatures. Journal of Range Management, 1996, 49, 425.	0.3	48
11	Crested Wheatgrass Control and Native Plant Establishment in Utah. Rangeland Ecology and Management, 2010, 63, 450-460.	2.3	47
12	Resilience and resistance in sagebrush ecosystems are associated with seasonal soil temperature and water availability. Ecosphere, 2018, 9, e02417.	2.2	43
13	Hydrothermal Assessment of Temporal Variability in Seedbed Microclimate. Rangeland Ecology and Management, 2013, 66, 127-135.	2.3	40
14	A Process-Based Application of State-and-Transition Models: A Case Study of Western Juniper (Juniperus occidentalis) Encroachment. Rangeland Ecology and Management, 2009, 62, 186-192.	2.3	39
15	A comparison of cumulative-germination response of cheatgrass (Bromus tectorum L.) and five perennial bunchgrass species to simulated field-temperature regimes. Environmental and Experimental Botany, 2010, 69, 320-327.	4.2	38
16	Hydrologic Response to Mechanical Shredding in a Juniper Woodland. Rangeland Ecology and Management, 2010, 63, 467-477.	2.3	37
17	Vegetation of Chained and Non-Chained Seedings after Wildfire in Utah. Journal of Range Management, 2003, 56, 81.	0.3	35
18	Soil Resources Influence Vegetation and Response to Fire and Fire-Surrogate Treatments in Sagebrush-Steppe Ecosystems. Rangeland Ecology and Management, 2014, 67, 506-521.	2.3	32

BRUCE A ROUNDY

#	Article	IF	CITATIONS
19	Vegetation Response to Piñon and Juniper Tree Shredding. Rangeland Ecology and Management, 2016, 69, 224-234.	2.3	31
20	Establishment of Native Semidesert Grasses into Existing Stands of Eragrostis lehmanniana in Southeastern Arizona. Restoration Ecology, 1996, 4, 155-162.	2.9	29
21	Woodland expansion's influence on belowground carbon and nitrogen in the Great Basin U.S Journal of Arid Environments, 2011, 75, 827-835.	2.4	29
22	Plant Establishment in Masticated Utah Juniper Woodlands. Rangeland Ecology and Management, 2013, 66, 597-607.	2.3	28
23	Surface soil water loss after summer rainfall in a semidesert grassland. Arid Land Research and Management, 1997, 11, 49-62.	0.3	26
24	Sage Grouse Groceries: Forb Response to Piñon-Juniper Treatments. Rangeland Ecology and Management, 2017, 70, 106-115.	2.3	26
25	Tree reduction and debris from mastication of Utah juniper alter the soil climate in sagebrush steppe. Forest Ecology and Management, 2013, 310, 777-785.	3.2	25
26	Pretreatment Tree Dominance and Conifer Removal Treatments Affect Plant Succession in Sagebrush Communities. Rangeland Ecology and Management, 2017, 70, 759-773.	2.3	23
27	Predicting germination in semi-arid wildland seedbeds. I. Thermal germination models. Environmental and Experimental Botany, 2012, 76, 60-67.	4.2	22
28	Emergence and Establishment of Basin Wildrye and Tall Wheatgrass in Relation to Moisture and Salinity. Journal of Range Management, 1985, 38, 126.	0.3	21
29	Predicting germination in semi-arid wildland seedbeds II. Field validation of wet thermal-time models. Environmental and Experimental Botany, 2012, 76, 68-73.	4.2	21
30	Utah juniper and two-needle piñon reduction alters fuel loads. International Journal of Wildland Fire, 2015, 24, 236.	2.4	20
31	Effects of Seedbed Preparation and Cattle Trampling on Burial of Grass Seeds. Journal of Range Management, 1991, 44, 171.	0.3	18
32	Frost Dynamics of Sagebrush Steppe Soils. Soil Science Society of America Journal, 2016, 80, 1403-1410.	2.2	18
33	Plant functional groups and species contribute to ecological resilience a decade after woodland expansion treatments. Ecosphere, 2021, 12, e03325.	2.2	18
34	Removal of perennial herbaceous species affects response of Cold Desert shrublands to fire. Journal of Vegetation Science, 2017, 28, 975-984.	2.2	17
35	Influence of an abscisic acid (ABA) seed coating on seed germination rate and timing of Bluebunch Wheatgrass. Ecology and Evolution, 2019, 9, 7438-7447.	1.9	17
36	Summer Establishment of Sonoran Desert Species for Revegetation of Abandoned Farmland Using Line Source Sprinkler Irrigation. Arid Land Research and Management, 2001, 15, 23-39.	1.6	15

BRUCE A ROUNDY

#	Article	IF	CITATIONS
37	Runoff and sediment response to tree control and seeding on a high soil erosion potential site in Utah: evidence for reversal of an abiotic threshold. Ecohydrology, 2017, 10, e1775.	2.4	15
38	Longâ€ŧerm effects of tree expansion and reduction on soil climate in a semiarid ecosystem. Ecosphere, 2020, 11, e03241.	2.2	14
39	Effects of elevation and selective disturbance on soil climate and vegetation in big sagebrush communities. Ecosphere, 2021, 12, e03377.	2.2	14
40	Postfire Drill-Seeding of Great Basin Plants: Effects of Contrasting Drills on Seeded and Nonseeded Species. Rangeland Ecology and Management, 2016, 69, 373-385.	2.3	13
41	Using germination prediction to inform seeding potential: II. comparison of germination predictions for cheatgrass and potential revegetation species in the Great Basin, USA. Journal of Arid Environments, 2018, 150, 82-91.	2.4	12
42	Using germination prediction to inform seeding potential: I. Temperature range validation of germination prediction models for the Great Basin, USA. Journal of Arid Environments, 2018, 150, 71-81.	2.4	11
43	Use of autoâ€germ to model germination timing in the sagebrushâ€steppe. Ecology and Evolution, 2018, 8, 11533-11542.	1.9	11
44	Treatment longevity and changes in surface fuel loads after pinyon–juniper mastication. Ecosphere, 2020, 11, e03226.	2.2	11
45	Soil Water Sensor Accuracy for Predicting Seedling Emergence Using a Hydrothermal Time Model. Arid Land Research and Management, 2007, 21, 229-243.	1.6	10
46	Mechanical Mastication of Utah Juniper Encroaching Sagebrush Steppe Increases Inorganic Soil N. Applied and Environmental Soil Science, 2014, 2014, 1-10.	1.7	10
47	Hydrothermal Germination Models: Assessment of the Wetâ€Thermal Approximation of Potential Field Response. Crop Science, 2018, 58, 2042-2049.	1.8	10
48	Postfire soil water repellency in piñon–juniper woodlands: Extent, severity, and thickness relative to ecological site characteristics and climate. Ecology and Evolution, 2017, 7, 4630-4639.	1.9	9
49	Sagebrush recovery patterns after fuel treatments mediated by disturbance type and plant functional group interactions. Ecosphere, 2021, 12, e03450.	2.2	9
50	Soils mediate the impact of fine woody debris on invasive and native grasses as whole trees are mechanically shredded into firebreaks in piñon-juniper woodlands. Journal of Arid Environments, 2017, 137, 60-68.	2.4	5
51	Evaluating Mechanical Treatments and Seeding of a Wyoming Big Sagebrush Community 10 Yr Post Treatment. Rangeland Ecology and Management, 2018, 71, 298-308.	2.3	5
52	Episodic occurrence of favourable weather constrains recovery of a cold desert shrubland after fire. Journal of Applied Ecology, 2021, 58, 1776.	4.0	3
53	Improving Reseeding Success after Catastrophic Wildfire with Surfactant Seed Coating Technology. , 2014, , 44-55.		3
54	Summer Establishment of Sonoran Desert Species for Revegetation of Abandoned Farmland Using Line Source Sprinkler Irrigation. Arid Land Research and Management, 2001, 15, 23-39.	1.6	2

#	Article	IF	CITATIONS
55	Temporal and Spatial Factors Influence Native Forb Emergence More Than Sowing Depth. Rangeland Ecology and Management, 2022, 83, 41-49.	2.3	1