Luca Schenato

List of Publications by Citations

Source: https://exaly.com/author-pdf/8399239/luca-schenato-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 193
 6,500
 30
 78

 papers
 citations
 h-index
 g-index

 224
 8,003
 4.1
 6.18

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
193	Kalman filtering with intermittent observations. <i>IEEE Transactions on Automatic Control</i> , 2004 , 49, 1453	-1;4;64	1524
192	Foundations of Control and Estimation Over Lossy Networks. <i>Proceedings of the IEEE</i> , 2007 , 95, 163-187	7 14.3	818
191	Distributed Kalman filtering based on consensus strategies. <i>IEEE Journal on Selected Areas in Communications</i> , 2008 , 26, 622-633	14.2	332
190	Optimal Estimation in Networked Control Systems Subject to Random Delay and Packet Drop. <i>IEEE Transactions on Automatic Control</i> , 2008 , 53, 1311-1317	5.9	289
189	Average TimeSynch: A consensus-based protocol for clock synchronization in wireless sensor networks. <i>Automatica</i> , 2011 , 47, 1878-1886	5.7	287
188	Distributed control applications within sensor networks. <i>Proceedings of the IEEE</i> , 2003 , 91, 1235-1246	14.3	228
187	Flapping flight for biomimetic robotic insects: part I-system modeling 2006 , 22, 776-788		211
186	To Zero or to Hold Control Inputs With Lossy Links?. <i>IEEE Transactions on Automatic Control</i> , 2009 , 54, 1093-1099	5.9	178
185	Flapping flight for biomimetic robotic insects: part II-flight control design 2006 , 22, 789-803		175
184	A distributed consensus protocol for clock synchronization in wireless sensor network 2007,		106
183	A Review of Distributed Fibre Optic Sensors for Geo-Hydrological Applications. <i>Applied Sciences</i> (Switzerland), 2017 , 7, 896	2.6	94
182	Identification of power distribution network topology via voltage correlation analysis 2013,		94
181	Tracking and Coordination of Multiple Agents Using Sensor Networks: System Design, Algorithms and Experiments. <i>Proceedings of the IEEE</i> , 2007 , 95, 234-254	14.3	88
180	Newton-Raphson Consensus for Distributed Convex Optimization. <i>IEEE Transactions on Automatic Control</i> , 2016 , 61, 994-1009	5.9	83
179	Optimal Synchronization for Networks of Noisy Double Integrators. <i>IEEE Transactions on Automatic Control</i> , 2011 , 56, 1146-1152	5.9	74
178	A Survey on Distributed Estimation and Control Applications Using Linear Consensus Algorithms. Lecture Notes in Control and Information Sciences, 2010 , 75-107	0.5	63
177	Optimal linear LQG control over lossy networks without packet acknowledgment. <i>Asian Journal of Control</i> , 2008 , 10, 3-13	1.7	56

(2008-2017)

176	Distributed optical fibre sensing for early detection of shallow landslides triggering. <i>Scientific Reports</i> , 2017 , 7, 14686	4.9	53
175	Information fusion strategies and performance bounds in packet-drop networks. <i>Automatica</i> , 2011 , 47, 1304-1316	5.7	49
174	Consensus-based distributed sensor calibration and least-square parameter identification in WSNs. <i>International Journal of Robust and Nonlinear Control</i> , 2010 , 20, 176-193	3.6	45
173	Lighting control with distributed wireless sensing and actuation for daylight and occupancy adaptation. <i>Energy and Buildings</i> , 2015 , 97, 13-20	7	44
172	Newton-Raphson consensus for distributed convex optimization 2011,		43
171	Optimal control with unreliable communication: the TCP case		43
170	Optimal estimation in networked control systems subject to random delay and packet loss 2006,		41
169	Bayesian linear state estimation using smart meters and PMUs measurements in distribution grids 2014 ,		39
168	Distributed Source Seeking via a Circular Formation of Agents Under Communication Constraints. <i>IEEE Transactions on Control of Network Systems</i> , 2016 , 3, 104-115	4	37
167	A web-based platform for automatic and continuous landslide monitoring: The Rotolon (Eastern Italian Alps) case study. <i>Computers and Geosciences</i> , 2014 , 63, 96-105	4.5	33
166	An Asynchronous Consensus-Based Algorithm for Estimation From Noisy Relative Measurements. <i>IEEE Transactions on Control of Network Systems</i> , 2014 , 1, 283-295	4	33
165	Attitude control for a micromechanical flying insect via sensor output feedback. <i>IEEE Transactions on Automation Science and Engineering</i> , 2004 , 20, 93-106		32
164	Personal lighting control with occupancy and daylight adaptation. Energy and Buildings, 2015, 105, 263-	·2 7 2	31
163	Kalman filtering with intermittent observations		30
162	Multi-temporal LiDAR-DTMs as a tool for modelling a complex landslide: a case study in the Rotolon catchment (eastern Italian Alps). <i>Natural Hazards and Earth System Sciences</i> , 2015 , 15, 715-722	3.9	29
161	. IEEE Journal on Selected Topics in Signal Processing, 2011 , 5, 691-706	7.5	29
160	Distributed statistical estimation of the number of nodes in sensor networks 2010 ,		29
159	A PI Consensus Controller for Networked Clocks Synchronization. <i>IFAC Postprint Volumes IPPV /</i> International Federation of Automatic Control, 2008 , 41, 10289-10294		29

158	Distributed Cardinality Estimation in Anonymous Networks. <i>IEEE Transactions on Automatic Control</i> , 2014 , 59, 645-659	5.9	27
157	Distributed perimeter patrolling and tracking for camera networks 2010 ,		27
156	The "Wireless Sensor Networks for City-Wide Ambient Intelligence (WISE-WAI)" Project. <i>Sensors</i> , 2009 , 9, 4056-82	3.8	27
155	Fiber optic sensor for hydrostatic pressure and temperature measurement in riverbanks monitoring. <i>Optics and Laser Technology</i> , 2016 , 82, 57-62	4.2	26
154	Distributed Kalman filtering using consensus strategies 2007,		26
153	An LQG Optimal Linear Controller for Control Systems with Packet Losses		26
152	Adaptive ProportionalIntegral Clock Synchronization in Wireless Sensor Networks. <i>IEEE Transactions on Control Systems Technology</i> , 2018 , 26, 610-623	4.8	25
151	Optimal sensor fusion for distributed sensors subject to random delay and packet loss 2007,		25
150	Swarm Coordination for Pursuit Evasion Games using Sensor Networks		24
149	. IEEE Transactions on Control of Network Systems, 2014 , 1, 204-217	4	23
148	A Data-Driven Daylight Estimation Approach to Lighting Control. <i>IEEE Access</i> , 2017 , 5, 21461-21471	3.5	22
147	Polarized Brillouin Amplification in Randomly Birefringent and Unidirectionally Spun Fibers. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 1420-1422	2.2	22
146	Distributed strain measurements in a CFA pile using high spatial resolution fibre optic sensors. <i>Engineering Structures</i> , 2018 , 160, 554-565	4.7	20
145	Analysis of Newton-Raphson consensus for multi-agent convex optimization under asynchronous and lossy communications 2015 ,		20
144	Optimal Linear LQG Control Over Lossy Networks Without Packet Acknowledgment 2006,		20
143	Time varying optimal control with packet losses 2004,		17
142	Multirobot Symmetric Formations for Gradient and Hessian Estimation With Application to Source Seeking. <i>IEEE Transactions on Robotics</i> , 2019 , 35, 782-789	6.5	16
141	Highly Sensitive FBG Pressure Sensor Based on a 3D-Printed Transducer. <i>Journal of Lightwave Technology</i> , 2019 , 37, 4784-4790	4	16

140	Distributed partitioning strategies for perimeter patrolling 2011,		16
139	Unimpaired phase-sensitive amplification by vector four-wave mixing near the zero-dispersion frequency. <i>Optics Express</i> , 2007 , 15, 2178-89	3.3	16
138	Asynchronous Newton-Raphson Consensus for Distributed Convex Optimization*. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2012 , 45, 133-138		15
137	Four-wave mixing in a rapidly-spun fiber. <i>Optics Express</i> , 2006 , 14, 8516-34	3.3	15
136	Distributed parametric and nonparametric regression with on-line performance bounds computation. <i>Automatica</i> , 2012 , 48, 2468-2481	5.7	14
135	Attitude Estimation of a Biologically Inspired Robotic Housefly via Multimodal Sensor Fusion. <i>Advanced Robotics</i> , 2009 , 23, 955-977	1.7	14
134	Flight control system for a micromechanical flying insect: architecture and implementation		14
133	An Optical Fiber Distributed Pressure Sensing Cable With Pa-Sensitivity and Enhanced Spatial Resolution. <i>IEEE Sensors Journal</i> , 2020 , 20, 5900-5908	4	13
132	Adaptive control-based clock synchronization in wireless sensor networks 2015,		13
131	Distributed multi-hop reactive power compensation in smart micro-grids subject to saturation constraints 2012 ,		13
130	Reflectometric measurement of birefringence rotation in single-mode optical fibers. <i>Optics Letters</i> , 2008 , 33, 2284-6	3	13
129	Simplified phenomenological model for randomly birefringent strongly spun fibers. <i>Optics Letters</i> , 2006 , 31, 2275-7	3	13
128	Virtual insect flight simulator (VIFS): a software testbed for insect flight		13
127	A Distributed Method for Linear Programming Problems With Box Constraints and Time-Varying Inequalities 2019 , 3, 404-409		13
126	Average TimeSync: a consensus-based protocol for time synchronization in wireless sensor networks1. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2009 , 42, 30-35		12
125	Distributed Polarization-Mode-Dispersion Measurement in Fiber Links by Polarization-Sensitive Reflectometric Techniques. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 1944-1946	2.2	12
124	Multimodal sensor fusion for attitude estimation of micromechanical flying insects: A geometric approach 2008 ,		12
123	Experimental Evaluation of an Industrial Application Layer Protocol Over Wireless Systems. <i>IEEE Transactions on Industrial Informatics</i> , 2007 , 3, 275-288	11.9	12

122	On the Role of Phasor Measurement Units for Distribution System State Estimation 2014,		11
121	Fiber optic sensors for precursory acoustic signals detection in rockfall events. <i>Journal of the European Optical Society-Rapid Publications</i> , 2012 , 7,	2.5	11
120	Multidimensional Newton-Raphson consensus for distributed convex optimization 2012,		11
119	Polarization properties of randomly-birefringent spun fibers. Optical Fiber Technology, 2006, 12, 205-210	62.4	11
118	Application of a high resolution distributed temperature sensor in a physical model reproducing subsurface water flow. <i>Measurement: Journal of the International Measurement Confederation</i> , 2017 , 98, 321-324	4.6	10
117	Feedback Control Over Lossy SNR-Limited Channels: Linear Encoder Decoder Controller Design. IEEE Transactions on Automatic Control, 2017, 62, 3054-3061	5.9	10
116	Trust Estimation in autonomic networks: a statistical mechanics approach 2009,		10
115	Controllability issues in flapping flight for biomimetic micro aerial vehicles (MAVs)		10
114	A Robust Block-Jacobi Algorithm for Quadratic Programming under Lossy Communications. <i>IFAC-PapersOnLine</i> , 2015 , 48, 126-131	0.7	9
113	Distributed quadratic programming under asynchronous and lossy communications via Newton-Raphson consensus 2015 ,		9
112	Multi-agent perimeter patrolling subject to mobility constraints 2012,		9
111	Fundamental and Random Birefringence Limitations to Delay in Slow Light Fiber Parametric Amplification. <i>Journal of Lightwave Technology</i> , 2008 , 26, 3721-3726	4	9
110	Multiagent Newton R aphson Optimization Over Lossy Networks. <i>IEEE Transactions on Automatic Control</i> , 2019 , 64, 2983-2990	5.9	9
109	LQG-like control of scalar systems over communication channels: The role of data losses, delays and SNR limitations. <i>Automatica</i> , 2014 , 50, 3155-3163	5.7	8
108	Asynchronous Distributed Optimization Over Lossy Networks via Relaxed ADMM: Stability and Linear Convergence. <i>IEEE Transactions on Automatic Control</i> , 2021 , 66, 2620-2635	5.9	8
107	Hands-On Experience of Crowdsourcing for Flood Risks. An Android Mobile Application Tested in Frederikssund, Denmark. <i>International Journal of Environmental Research and Public Health</i> , 2018 , 15,	4.6	8
106	Composite Anchors for Slope Stabilisation: Monitoring of their In-Situ Behaviour with Optical Fibre. <i>Geosciences (Switzerland)</i> , 2019 , 9, 240	2.7	7
105	Multi-agents adaptive estimation and coverage control using Gaussian regression 2015,		7

104	LQG cheap control over SNR-limited lossy channels with delay 2013 ,		7
103	Remote estimation subject to packet loss and quantization noise 2013,		7
102	Decentralized task assignment in camera networks 2010 ,		7
101	Attitude Stabilization of a Biologically Inspired Robotic Housefly via Dynamic Multimodal Attitude Estimation. <i>Advanced Robotics</i> , 2009 , 23, 2113-2138	1.7	7
100	Polarized Backward Raman Amplification in Unidirectionally Spun Fibers. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 27-29	2.2	7
99	Biomimetic sensor suite for flight control of a micromechanical flying insect: design and experimental results		7
98	Process variation analysis for MEMS design 2001 ,		7
97	A Rugged FBG-Based Pressure Sensor for Water Level Monitoring in Dikes. <i>IEEE Sensors Journal</i> , 2021 , 21, 13263-13271	4	7
96	New Perspectives in Landslide Displacement Detection Using Sentinel-1 Datasets. <i>Remote Sensing</i> , 2019 , 11, 2135	5	7
95	Classification of Occupancy Sensor Anomalies in Connected Indoor Lighting Systems. <i>IEEE Internet of Things Journal</i> , 2019 , 6, 7175-7182	10.7	6
94	Time-Critical Wireless Networked Embedded Systems: Feasibility and Experimental Assessment. <i>IEEE Transactions on Industrial Informatics</i> , 2020 , 16, 7732-7742	11.9	6
93	Average Consensus with Asynchronous Updates and Unreliable Communication. <i>IFAC-PapersOnLine</i> , 2017 , 50, 601-606	0.7	6
92	Consensus-based source-seeking with a circular formation of agents 2013,		6
91	Optimal rendezvous control for randomized communication topologies 2006,		6
90	Stokes-space derivations of generalized Schrodinger equations for wave propagation in various fibers. <i>Optics Express</i> , 2007 , 15, 10964-83	3.3	6
89	LQG CONTROL WITH MISSING OBSERVATION AND CONTROL PACKETS. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2005 , 38, 1-6		6
88	Hovering flight control of a micromechanical flying insect		6
87	Safe Distributed Control of Wireless Power Transfer Networks. <i>IEEE Internet of Things Journal</i> , 2019 , 6, 1267-1275	10.7	6

86	Distributed Optimization over Lossy Networks via Relaxed Peaceman-Rachford Splitting: a Robust ADMM Approach 2018 ,		6
85	Distributed Multi-Agent Gaussian Regression via Finite-Dimensional Approximations. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2019 , 41, 2098-2111	13.3	5
84	2017,		5
83	Evaluating data quality collected by volunteers for first-level inspection of hydraulic structures in mountain catchments. <i>Natural Hazards and Earth System Sciences</i> , 2014 , 14, 2681-2698	3.9	5
82	Distributed consensus-based Bayesian estimation: sufficient conditions for performance characterization 2010 ,		5
81	Single-Pump Parametric Amplification in Randomly Birefringent Unidirectionally Spun Fibers. <i>IEEE Photonics Technology Letters</i> , 2010 , 22, 73-75	2.2	5
80	Gossip algorithms for distributed ranking 2011 ,		5
79	. IEEE Photonics Technology Letters, 2008 , 20, 854-856	2.2	5
78	Information fusion strategies from distributed filters in packet-drop networks 2008,		5
77	The Rotolon Catchment Early-Warning System 2015 , 91-95		5
76	Smart Grid State Estimation with PMUs Time Synchronization Errors. <i>Energies</i> , 2020 , 13, 5148	3.1	5
75	Cooperative Aerial Load Transportation via Sampled Communication 2020 , 4, 277-282		5
74	A distributed optimal power management system for microgrids with plug&play capabilities. <i>Advanced Control for Applications</i> , 2021 , 3,	0.9	5
73	Asynchronous Distributed Camera Network Patrolling Under Unreliable Communication. <i>IEEE Transactions on Automatic Control</i> , 2017 , 62, 5982-5989	5.9	4
72	Linear encoder-decoder-controller design over channels with packet loss and quantization noise 2015 ,		4
71	LQG cheap control subject to packet loss and SNR limitations 2013,		4
70	About the Differential Group Delay of Spun Fibers. Journal of Lightwave Technology, 2008, 26, 3660-366	5 8 ,	4
69	Partition-based multi-agent optimization in the presence of lossy and asynchronous communication. <i>Automatica</i> , 2020 , 111, 108648	5.7	4

68	. IEEE Transactions on Network Science and Engineering, 2020 , 7, 2952-2965	4.9	4
67	SNR-triggered Communication Rate for LQG Control over Wi-Fi 2018,		4
66	Is ADMM always faster than Average Consensus?. <i>Automatica</i> , 2018 , 91, 311-315	5.7	3
65	Drive-by-Wi-Fi: testing 1 kHz control experiments over wireless 2019 ,		3
64	Sensor fusion and estimation strategies for data traffic reduction in rooted wireless sensor networks 2008 ,		3
63	Influence of the birefringence autocorrelation function on the polarization mode dispersion of constantly spun fibers. <i>Optics Letters</i> , 2007 , 32, 3236-8	3	3
62	Effects of spin inaccuracy on PMD reduction in spun fibers. <i>Journal of Lightwave Technology</i> , 2005 , 23, 4184-4191	4	3
61	A mobile application to engage citizens and volunteers. Crowdsourcing within natural hazard. <i>Rendiconti Online Societa Geologica Italiana</i> ,42, 70-72		3
60	Adaptive transmission rate for LQG control over Wi-Fi: A cross-layer approach. <i>Automatica</i> , 2020 , 119, 109092	5.7	3
59	A Monitoring Network to Map and Assess Landslide Activity in a Highly Anthropized Area. <i>Geosciences (Switzerland)</i> , 2016 , 6, 40	2.7	3
58	An identification approach to lighting control 2016 ,		3
57	A Partition-Based Implementation of the Relaxed ADMM for Distributed Convex Optimization over Lossy Networks 2018 ,		3
56	Anomalous occupancy sensor behavior detection in connected indoor lighting systems 2019,		2
55	On the use of OFDR for high-spatial resolution strain measurements in mechanical and geotechnical engineering 2018,		2
54	A variation of the Newton Pepys problem and its connections to size-estimation problems. <i>Statistics and Probability Letters</i> , 2013 , 83, 1472-1478	0.6	2
53	Landslides Inventory and Trans-boundary Risk Management in Koshi River Basin, Himalaya. <i>Springer Geography</i> , 2017 , 409-426	0.4	2
52	Feasibility of crack monitoring in a road tunnel based on a low cost plastic optical fiber sensor 2015,		2
51	Consensus based estimation of anonymous networks size using Bernoulli trials 2012,		2

50	Interrogation of multiple ferrule-top-cantilever sensors for acoustic emission sensing 2013,		2
49	Characterization of a novel dual-core elliptical hollow optical fiber with wavelength decreasing differential group delay. <i>Optics Express</i> , 2010 , 18, 20344-9	3.3	2
48	Unidirectionally spun fibers for efficient narrow-band parametric amplification 2009,		2
47	On the discardability of data in support vector classification problems 2011,		2
46	On the Graph Building Problem in Camera Networks. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2010 , 43, 299-304		2
45	Narrow Band Optical Parametric Amplification for Slow Light in Randomly Birefringent Fibers 2008,		2
44	Optical parametric amplification for slow light in random birefringence fibers 2007,		2
43	Polarization Mode Dispersion Management Using Unidirectionally Spun Fibers. <i>Journal of Lightwave Technology</i> , 2006 , 24, 3976-3981	4	2
42	Low polarization mode dispersion measurements in ad hoc drawn spun fibers. <i>Optical Fiber Technology</i> , 2006 , 12, 323-327	2.4	2
41	A Hierarchical Multiple-Target Tracking Algorithm for Sensor Networks		2
40	A Hierarchical Multiple-Target Tracking Algorithm for Sensor Networks Design and field testing of a fiber optic pressure sensor for underground water level monitoring 2019,		2
	Design and field testing of a fiber optic pressure sensor for underground water level monitoring		
40	Design and field testing of a fiber optic pressure sensor for underground water level monitoring 2019 , Multi temporal LiDAR-DTMs as a tool for modelling a complex landslide: a case study in the Rotolon		2
40	Design and field testing of a fiber optic pressure sensor for underground water level monitoring 2019, Multi temporal LiDAR-DTMs as a tool for modelling a complex landslide: a case study in the Rotolon catchment (Eastern Italian Alps) Embedded systems for timedritical applications over Wi-Fi: design and experimental assessment	0.3	2
40 39 38	Design and field testing of a fiber optic pressure sensor for underground water level monitoring 2019, Multi temporal LiDAR-DTMs as a tool for modelling a complex landslide: a case study in the Rotolon catchment (Eastern Italian Alps) Embedded systems for timedritical applications over Wi-Fi: design and experimental assessment 2019, Multidisciplinary Analysis and Modelling of a River Embankment Affected by Piping. Lecture Notes	0.3	2 2
40 39 38 37	Design and field testing of a fiber optic pressure sensor for underground water level monitoring 2019, Multi temporal LiDAR-DTMs as a tool for modelling a complex landslide: a case study in the Rotolon catchment (Eastern Italian Alps) Embedded systems for timedritical applications over Wi-Fi: design and experimental assessment 2019, Multidisciplinary Analysis and Modelling of a River Embankment Affected by Piping. Lecture Notes in Civil Engineering, 2019, 234-244	0.3	2 2 2
40 39 38 37 36	Design and field testing of a fiber optic pressure sensor for underground water level monitoring 2019, Multi temporal LiDAR-DTMs as a tool for modelling a complex landslide: a case study in the Rotolon catchment (Eastern Italian Alps) Embedded systems for timeBritical applications over Wi-Fi: design and experimental assessment 2019, Multidisciplinary Analysis and Modelling of a River Embankment Affected by Piping. Lecture Notes in Civil Engineering, 2019, 234-244 Reference Governor for Constrained Control Over Lossy Channels 2020, 4, 271-276		2 2 2 2

32	Centralized lighting control with luminaire-based occupancy and light sensing 2015,	1
31	Heavy-tails in Kalman filtering with packet losses. <i>European Journal of Control</i> , 2019 , 50, 62-71 2.5	1
30	Auto-tuning procedures for distributed nonparametric regression algorithms 2015,	1
29	The convergence rate of Newton-Raphson consensus optimization for quadratic cost functions 2012 ,	1
28	Distributed function and time delay estimation using nonparametric techniques 2009,	1
27	Design, estimation and experimental validation of optical Polarization Mode Dispersion Compensator in 40 Gbit/s NRZ and RZ optical systems. <i>Optical Fiber Technology</i> , 2009 , 15, 242-250	1
26	Simultaneous distributed estimation and classification in sensor networks. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2010 , 43, 281-286	1
25	Reflectometric Characterization of Hinges in Fiber Optic Links 2008,	1
24	Fundamental limit of the achievable time delay in Slow-light NB-OPA 2008,	1
23	Stimulated Brillouin scattering in randomly birefringent, unidirectionally spun fibers 2008,	1
23	Stimulated Brillouin scattering in randomly birefringent, unidirectionally spun fibers 2008, To zero or to hold control inputs in lossy networked control systems? 2007,	1
		1
22	To zero or to hold control inputs in lossy networked control systems? 2007,	1
22	To zero or to hold control inputs in lossy networked control systems? 2007 , 1 kHz Remote Control of a Balancing Robot with Wi-Fi-in-the-Loop. <i>IFAC-PapersOnLine</i> , 2020 , 53, 2614-2619 Mathematical modelling of SigE regulatory network reveals new insights into bistability of	1
22 21 20	To zero or to hold control inputs in lossy networked control systems? 2007, 1 kHz Remote Control of a Balancing Robot with Wi-Fi-in-the-Loop. <i>IFAC-PapersOnLine</i> , 2020, 53, 2614-2619 Mathematical modelling of SigE regulatory network reveals new insights into bistability of mycobacterial stress response. <i>BMC Bioinformatics</i> , 2021, 22, 558 Accelerated Probabilistic Power Flow in Electrical Distribution Networks via Model Order	1 1
22 21 20	To zero or to hold control inputs in lossy networked control systems? 2007, 1 kHz Remote Control of a Balancing Robot with Wi-Fi-in-the-Loop. <i>IFAC-PapersOnLine</i> , 2020, 53, 2614-2619 Mathematical modelling of SigE regulatory network reveals new insights into bistability of mycobacterial stress response. <i>BMC Bioinformatics</i> , 2021, 22, 558 Accelerated Probabilistic Power Flow in Electrical Distribution Networks via Model Order Reduction and Neumann Series Expansion. <i>IEEE Transactions on Power Systems</i> , 2021, 1-1	1 1 1
22 21 20 19	To zero or to hold control inputs in lossy networked control systems? 2007, 1 kHz Remote Control of a Balancing Robot with Wi-Fi-in-the-Loop. <i>IFAC-PapersOnLine</i> , 2020, 53, 2614-2619 Mathematical modelling of SigE regulatory network reveals new insights into bistability of mycobacterial stress response. <i>BMC Bioinformatics</i> , 2021, 22, 558 Accelerated Probabilistic Power Flow in Electrical Distribution Networks via Model Order Reduction and Neumann Series Expansion. <i>IEEE Transactions on Power Systems</i> , 2021, 1-1 An optical fibre cable for distributed pressure sensing: a proof of concept 2019, An optical fiber-based monitoring system to study the seepage flow below the landside toe of a	1 1 1

14	Finding potential support vectors in separable classification problems. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2013 , 24, 1799-813	10.3	0
13	Polarization control for slow and fast light in fiber optical, Raman-assisted, parametric amplification. <i>Comptes Rendus Physique</i> , 2009 , 10, 980-990	1.4	О
12	Model-Free Radio Map Estimation in Massive MIMO Systems via Semi-Parametric Gaussian Regression. <i>IEEE Wireless Communications Letters</i> , 2022 , 11, 473-477	5.9	0
11	Remote MPC for Tracking Over Lossy Networks 2022 , 6, 1040-1045		О
10	Transmission power allocation for remote estimation with multi-packet reception capabilities. <i>Automatica</i> , 2022 , 140, 110257	5.7	0
9	Distributed Kalman filtering for Time-Space Gaussian Processes. IFAC-PapersOnLine, 2017, 50, 13234-1	323 9	
8	Modeling and Design of Low-PMD Spun Fibers. Fiber and Integrated Optics, 2008, 27, 216-222	0.8	
7	Experimental justification of a method for low-PMD measurements. <i>IEEE Photonics Technology Letters</i> , 2006 , 18, 1228-1230	2.2	
6	Monitoring the Foundation Soil of an Existing Levee Using Distributed Temperature Fiber Optic Sensors. <i>Springer Series in Geomechanics and Geoengineering</i> , 2018 , 677-680	0.1	
5	From Sensor to Processing Networks: Optimal Estimation with Computation and Communication Latency. <i>IFAC-PapersOnLine</i> , 2020 , 53, 11024-11031	0.7	
4	Ganderberg Landslide Characterization Through Monitoring 2015 , 1327-1331		
3	Disaster Risk Reduction in Italy: A Case History of a High-Risk Landslide. <i>Lecture Notes in Civil Engineering</i> , 2022 , 161-174	0.3	
2	On the Use of Optical Fiber Sensors for Debris Flow Monitoring: A Review of Recent Achievements. <i>Lecture Notes in Civil Engineering</i> , 2022 , 60-70	0.3	
1	A novel bound on the convergence rate of ADMM for distributed optimization. <i>Automatica</i> , 2022 , 1104	103.7	