Roderik S W Van De Wal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8398838/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Eight glacial cycles from an Antarctic ice core. Nature, 2004, 429, 623-628.	13.7	2,015
2	One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 2006, 444, 195-198.	13.7	1,111
3	Modelled atmospheric temperatures and global sea levels over the past million years. Nature, 2005, 437, 125-128.	13.7	627
4	Eemian interglacial reconstructed from a Greenland folded ice core. Nature, 2013, 493, 489-494.	13.7	565
5	Global sea-level budget 1993–present. Earth System Science Data, 2018, 10, 1551-1590.	3.7	409
6	North American ice-sheet dynamics and the onset of 100,000-year glacial cycles. Nature, 2008, 454, 869-872.	13.7	377
7	A Review of Antarctic Surface Snow Isotopic Composition: Observations, Atmospheric Circulation, and Isotopic Modeling*. Journal of Climate, 2008, 21, 3359-3387.	1.2	344
8	Projecting twenty-first century regional sea-level changes. Climatic Change, 2014, 124, 317-332.	1.7	318
9	Modelling the response of glaciers to climate warming. Climate Dynamics, 1998, 14, 267-274.	1.7	310
10	Large and Rapid Melt-Induced Velocity Changes in the Ablation Zone of the Greenland Ice Sheet. Science, 2008, 321, 111-113.	6.0	277
11	Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global. Surveys in Geophysics, 2019, 40, 1251-1289.	2.1	262
12	Making sense of palaeoclimate sensitivity. Nature, 2012, 491, 683-691.	13.7	247
13	Future sea-level rise from Greenland's main outlet glaciers in a warming climate. Nature, 2013, 497, 235-238.	13.7	242
14	Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios. Climate Dynamics, 2012, 38, 1191-1209.	1.7	225
15	The role of albedo and accumulation in the 2010 melting record in Greenland. Environmental Research Letters, 2011, 6, 014005.	2.2	207
16	Cenozoic global ice-volume and temperature simulations with 1-D ice-sheet models forced by benthic δ ¹⁸ 0 records. Annals of Glaciology, 2010, 51, 23-33.	2.8	201
17	Projected land ice contributions to twenty-first-century sea level rise. Nature, 2021, 593, 74-82.	13.7	200
18	ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. Cryosphere, 2020, 14, 3033-3070.	1.5	198

#	Article	IF	CITATIONS
19	Parameterization of global and longwave incoming radiation for the Greenland Ice Sheet. Global and Planetary Change, 1994, 9, 143-164.	1.6	197
20	Twentieth-Century Global-Mean Sea Level Rise: Is the Whole Greater than the Sum of the Parts?. Journal of Climate, 2013, 26, 4476-4499.	1.2	197
21	Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – PartÂ1: Greenland (1958–2016). Cryosphere, 2018, 12, 811-831.	1.5	194
22	Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland Ice Sheet. Cryosphere, 2015, 9, 1831-1844.	1.5	175
23	State of the Climate in 2018. Bulletin of the American Meteorological Society, 2019, 100, Si-S306.	1.7	168
24	Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta—the Netherlands as an example. Climatic Change, 2011, 109, 617-645.	1.7	166
25	State of the Climate in 2017. Bulletin of the American Meteorological Society, 2018, 99, Si-S310.	1.7	160
26	Greenland meltwater storage in firn limited by near-surface ice formation. Nature Climate Change, 2016, 6, 390-393.	8.1	156
27	Coastal sea level changes, observed and projected during the 20th and 21st century. Climatic Change, 2016, 134, 269-281.	1.7	153
28	The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6. Cryosphere, 2020, 14, 3071-3096.	1.5	144
29	The mid-Cretaceous North Atlantic nutrient trap: Black shales and OAEs. Paleoceanography, 2010, 25, n/a-n/a.	3.0	141
30	Elevation Changes in Antarctica Mainly Determined by Accumulation Variability. Science, 2008, 320, 1626-1629.	6.0	138
31	State of the Climate in 2013. Bulletin of the American Meteorological Society, 2014, 95, S1-S279.	1.7	138
32	Glacial Isostatic Adjustment over Antarctica from combined ICESat and GRACE satellite data. Earth and Planetary Science Letters, 2009, 288, 516-523.	1.8	135
33	State of the Climate in 2010. Bulletin of the American Meteorological Society, 2011, 92, S1-S236.	1.7	135
34	Assessing and Improving the Quality of Unattended Radiation Observations in Antarctica. Journal of Atmospheric and Oceanic Technology, 2004, 21, 1417-1431.	0.5	132
35	Dust from the dark region in the western ablation zone of the Greenland ice sheet. Cryosphere, 2011, 5, 589-601.	1.5	132
36	Persistent 400,000-year variability of Antarctic ice volume and the carbon cycle is revealed throughout the Plio-Pleistocene. Nature Communications, 2014, 5, 2999.	5.8	132

#	Article	IF	CITATIONS
37	State of the Climate in 2016. Bulletin of the American Meteorological Society, 2017, 98, Si-S280.	1.7	132
38	State of the Climate in 2012. Bulletin of the American Meteorological Society, 2013, 94, S1-S258.	1.7	129
39	Partitioning of melt energy and meltwater fluxes in the ablation zone of the west Greenland ice sheet. Cryosphere, 2008, 2, 179-189.	1.5	127
40	Partitioning the Uncertainty of Ensemble Projections of Global Glacier Mass Change. Earth's Future, 2020, 8, e2019EF001470.	2.4	121
41	Natural and anthropogenic variations in methane sources during the past two millennia. Nature, 2012, 490, 85-88.	13.7	115
42	The seasonal cycle and interannual variability of surface energy balance and melt in the ablation zone of the west Greenland ice sheet. Cryosphere, 2011, 5, 377-390.	1.5	114
43	Meeting User Needs for Sea Level Rise Information: A Decision Analysis Perspective. Earth's Future, 2019, 7, 320-337.	2.4	112
44	Surface mass-balance observations and automatic weather station data along a transect near Kangerlussuaq, West Greenland. Annals of Glaciology, 2005, 42, 311-316.	2.8	111
45	GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet. Cryosphere, 2020, 14, 3935-3958.	1.5	111
46	Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall. Nature Geoscience, 2015, 8, 647-653.	5.4	107
47	An energy balance model for the Greenland ice sheet. Global and Planetary Change, 1994, 9, 115-131.	1.6	106
48	Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models. Cryosphere, 2012, 6, 1275-1294.	1.5	106
49	Modelling the response of glaciers to climate change by applying volume-area scaling in combination with a high resolution GCM. Climate Dynamics, 2001, 18, 359-366.	1.7	103
50	Self-regulation of ice flow varies across the ablation area in south-west Greenland. Cryosphere, 2015, 9, 603-611.	1.5	101
51	Ice cores from Svalbard––useful archives of past climate and pollution history. Physics and Chemistry of the Earth, 2003, 28, 1217-1228.	1.2	98
52	Reconstruction of a continuous high-resolution CO ₂ record over the past 20 million years. Climate of the Past, 2011, 7, 1459-1469.	1.3	98
53	Twenty-one years of mass balance observations along the K-transect, West Greenland. Earth System Science Data, 2012, 4, 31-35.	3.7	97
54	A fully coupled 3-D ice-sheet–sea-level model: algorithm and applications. Geoscientific Model Development, 2014, 7, 2141-2156.	1.3	95

#	Article	IF	CITATIONS
55	Climate model boundary conditions for four Cretaceous time slices. Climate of the Past, 2007, 3, 647-657.	1.3	93
56	Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2). Earth System Dynamics, 2020, 11, 35-76.	2.7	92
57	Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison. Cryosphere, 2018, 12, 1433-1460.	1.5	89
58	The response of Petermann Glacier, Greenland, to large calving events, and its future stability in the context of atmospheric and oceanic warming. Journal of Glaciology, 2012, 58, 229-239.	1.1	87
59	Surface radiation balance in Antarctica as measured with automatic weather stations. Journal of Geophysical Research, 2004, 109, .	3.3	85
60	Seasonal cycles of Antarctic surface energy balance from automatic weather stations. Annals of Glaciology, 2005, 41, 131-139.	2.8	85
61	Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14156-14161.	3.3	85
62	Antarctic ice sheet and oceanographic response to eccentricity forcing during the early Miocene. Climate of the Past, 2011, 7, 869-880.	1.3	84
63	Sea Level Change and Coastal Climate Services: The Way Forward. Journal of Marine Science and Engineering, 2017, 5, 49.	1.2	81
64	Deposition History of Brominated Flame Retardant Compounds in an Ice Core from Holtedahlfonna, Svalbard, Norway. Environmental Science & Technology, 2010, 44, 7405-7410.	4.6	80
65	Effect of periodic melting on geochemical and isotopic signals in an ice core from Lomonosovfonna, Svalbard. Journal of Geophysical Research, 2002, 107, ACL 1-1.	3.3	79
66	Thousand years of winter surface air temperature variations in Svalbard and northern Norway reconstructed from ice-core data. Polar Research, 2011, 30, 7379.	1.6	78
67	State of the Climate in 2014. Bulletin of the American Meteorological Society, 2015, 96, ES1-ES32.	1.7	78
68	State of the Climate in 2008. Bulletin of the American Meteorological Society, 2009, 90, S1-S196.	1.7	74
69	Response of valley glaciers to climate change and kinematic waves: a study with a numerical ice-flow model. Journal of Glaciology, 1995, 41, 142-152.	1.1	73
70	Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models. Cryosphere, 2020, 14, 2331-2368.	1.5	72
71	Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP). Journal of Glaciology, 2020, 66, 891-904.	1.1	70
72	initMIP-Antarctica: an ice sheet model initialization experiment of ISMIP6. Cryosphere, 2019, 13, 1441-1471.	1.5	69

#	Article	IF	CITATIONS
73	The Summer Surface Energy Balance of the High Antarctic Plateau. Boundary-Layer Meteorology, 2005, 115, 289-317.	1.2	67
74	A continuous simulation of global ice volume over the past 1 million years with 3-D ice-sheet models. Climate Dynamics, 2013, 41, 1365-1384.	1.7	67
75	Stratigraphic continuity and fragmentary sedimentation: the success of cyclostratigraphy as part of integrated stratigraphy. Geological Society Special Publication, 2015, 404, 157-197.	0.8	66
76	A new ice-core record from Lomonosovfonna, Svalbard: viewing the 1920–97 data in relation to present climate and environmental conditions. Journal of Glaciology, 2001, 47, 335-345.	1.1	63
77	Coupled regional climate–ice-sheet simulation shows limited Greenland ice loss during the Eemian. Climate of the Past, 2013, 9, 1773-1788.	1.3	62
78	CO 2 over the past 5 million years: Continuous simulation and new δ11 B-based proxy data. Earth and Planetary Science Letters, 2016, 439, 1-10.	1.8	62
79	Simulating the Antarctic ice sheet in the late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project. Cryosphere, 2015, 9, 881-903.	1.5	61
80	Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers. Journal of Glaciology, 2016, 62, 861-887.	1.1	59
81	A study of the surface mass balance in Dronning Maud Land, Antarctica, using automatic weather stationS. Journal of Glaciology, 2004, 50, 565-582.	1.1	58
82	Evaluating uncertainties of future marine flooding occurrence as sea-level rises. Environmental Modelling and Software, 2015, 73, 44-56.	1.9	58
83	Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes. Cryosphere, 2018, 12, 49-70.	1.5	58
84	Probabilistic Sea Level Projections at the Coast by 2100. Surveys in Geophysics, 2019, 40, 1673-1696.	2.1	58
85	Greenland's contribution to global sea-level rise by the end of the 21st century. Climate Dynamics, 2011, 37, 1427-1442.	1.7	57
86	The K-transect in west Greenland: Automatic weather station data (1993–2016). Arctic, Antarctic, and Alpine Research, 2018, 50, .	0.4	57
87	Methanesulfonic acid in a Svalbard Ice Core as an indicator of ocean climate. Geophysical Research Letters, 2000, 27, 1159-1162.	1.5	56
88	Assessing spatio-temporal variability and trends in modelled and measured Greenland Ice Sheet albedo (2000–2013). Cryosphere, 2014, 8, 2293-2312.	1.5	55
89	Coupling of climate models and ice sheet models by surface mass balance gradients: application to the Greenland Ice Sheet. Cryosphere, 2012, 6, 255-272.	1.5	54
90	A mass balance model for the Eurasian Ice Sheet for the last 120,000Âyears. Global and Planetary Change, 2008, 61, 194-208.	1.6	52

#	Article	IF	CITATIONS
91	Towards Comprehensive Observing and Modeling Systems for Monitoring and Predicting Regional to Coastal Sea Level. Frontiers in Marine Science, 2019, 6, .	1.2	51
92	Sensible heat exchange at the Antarctic snow surface: a study with automatic weather stations. International Journal of Climatology, 2005, 25, 1081-1101.	1.5	50
93	Modeling the isotopic composition of Antarctic snow using backward trajectories: Simulation of snow pit records. Journal of Geophysical Research, 2006, 111, .	3.3	50
94	Current use and legacy pesticide deposition to ice caps on Svalbard, Norway. Journal of Geophysical Research, 2010, 115, .	3.3	50
95	A comparison of energy balance calculations, measured ablation and meltwater runoff near SÃ,ndre StrÃ,mfjord, West Greenland. Global and Planetary Change, 1994, 9, 29-38.	1.6	49
96	A 1500 year record of accumulation at Amundsenisen western Dronning Maud Land, Antarctica, derived from electrical and radioactive measurements on a 120 m ice core. Journal of Geophysical Research, 2000, 105, 12471-12483.	3.3	49
97	Reconstruction of three centuries of annual accumulation rates based on the record of stable isotopes of water from Lomonosovfonna, Svalbard. Annals of Glaciology, 2002, 35, 57-62.	2.8	49
98	Reconstructing the glacier contribution to sea-level rise back to 1850. Cryosphere, 2007, 1, 59-65.	1.5	49
99	Mass-balance modelling of the Greenland ice sheet: a comparison of an energy-balance and a degree-day model. Annals of Glaciology, 1996, 23, 36-45.	2.8	48
100	Sensitivity of Rhonegletscher, Switzerland, to climate change: experiments with a one-dimensional flowline model. Journal of Glaciology, 1998, 44, 383-393.	1.1	48
101	A study of ablation variations on the tongue of Hintereisferner, Austrian Alps. Journal of Glaciology, 1992, 38, 319-324.	1.1	46
102	The Isotopic Composition of Present-Day Antarctic Snow in a Lagrangian Atmospheric Simulation*. Journal of Climate, 2007, 20, 739-756.	1.2	46
103	Framework for Highâ€End Estimates of Sea Level Rise for Stakeholder Applications. Earth's Future, 2019, 7, 923-938.	2.4	46
104	Two ice-core δ180 records from Svalbard illustrating climate and sea-ice variability over the last 400 years. Holocene, 2005, 15, 501-509.	0.9	44
105	MIS 5e relative sea-level changes in the Mediterranean Sea: Contribution of isostatic disequilibrium. Quaternary Science Reviews, 2018, 185, 122-134.	1.4	44
106	Sea level rise risks and societal adaptation benefits in low-lying coastal areas. Scientific Reports, 2022, 12, .	1.6	44
107	Linear and non-linear response of late Neogene glacial cycles to obliquity forcing and implications for the Milankovitch theory. Quaternary Science Reviews, 2010, 29, 352-365.	1.4	43
108	The 800 year long ion record from the Lomonosovfonna (Svalbard) ice core. Journal of Geophysical Research, 2005, 110, .	3.3	42

#	Article	IF	CITATIONS
109	Lessons on Climate Sensitivity From Past Climate Changes. Current Climate Change Reports, 2016, 2, 148-158.	2.8	42
110	Reconstruction of the historical temperature trend from measurements in a medium-length borehole on the Lomonosovfonna plateau, Svalbard. Annals of Glaciology, 2002, 35, 371-378.	2.8	41
111	Simultaneous stable isotope analysis of methane and nitrous oxide on ice core samples. Atmospheric Measurement Techniques, 2011, 4, 2607-2618.	1.2	41
112	Mass-balance modelling of the Greenland ice sheet: a comparison of an energy-balance and a degree-day model. Annals of Glaciology, 1996, 23, 36-45.	2.8	40
113	Recent Progress in Greenland Ice Sheet Modelling. Current Climate Change Reports, 2017, 3, 291-302.	2.8	40
114	Model calculations of the age of firn air across the Antarctic continent. Atmospheric Chemistry and Physics, 2004, 4, 1365-1380.	1.9	39
115	On the Cause of the Midâ€Pleistocene Transition. Reviews of Geophysics, 2021, 59, e2020RG000727.	9.0	39
116	Recommendations for the collection and synthesis of Antarctic Ice Sheet mass balance data. Global and Planetary Change, 2004, 42, 1-15.	1.6	38
117	Transient nature of the Earth's climate and the implications for the interpretation of benthic records. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 335-336, 4-11.	1.0	38
118	Ice sheet model dependency of the simulated Greenland Ice Sheet in the mid-Pliocene. Climate of the Past, 2015, 11, 369-381.	1.3	38
119	Comparing tide gauge observations to regional patterns of sea-level change (1961–2003). Earth System Dynamics, 2014, 5, 243-255.	2.7	37
120	On the state dependency of the equilibrium climate sensitivity during the last 5 million years. Climate of the Past, 2015, 11, 1801-1823.	1.3	36
121	Daily cycle of the surface layer and energy balance on the high Antarctic Plateau. Antarctic Science, 2005, 17, 121-133.	0.5	35
122	Seasonal velocities of eight major marine-terminating outlet glaciers of the Greenland ice sheet from continuous in situ GPS instruments. Earth System Science Data, 2013, 5, 277-287.	3.7	35
123	Uncertainty and Bias in Global to Regional Scale Assessments of Current and Future Coastal Flood Risk. Earth's Future, 2021, 9, e2020EF001882.	2.4	35
124	Carbonaceous particles reveal that Late Holocene dust causes the dark region in the western ablation zone of the Greenland ice sheet. Journal of Glaciology, 2012, 58, 787-794.	1.1	33
125	Tropical Pacific–high latitude south Atlantic teleconnections as seen in <i>δ</i> ¹⁸ 0 variability in Antarctic coastal ice cores. Journal of Geophysical Research, 2009, 114, .	3.3	32
126	Stand-alone single-frequency GPS ice velocity observations on Nordenskiöldbreen, Svalbard. Cryosphere, 2010, 4, 593-604.	1.5	32

#	Article	IF	CITATIONS
127	Representation of Antarctic Katabatic Winds in a High-Resolution GCM and a Note on Their Climate Sensitivity. Journal of Climate, 1997, 10, 3111-3130.	1.2	32
128	Firn accumulation records for the past 1000 years on the basis of dielectric profiling of six cores from Dronning Maud Land, Antarctica. Journal of Glaciology, 2004, 50, 279-291.	1.1	31
129	Estimating the contribution of Arctic glaciers to sea-level change in the next 100 years. Annals of Glaciology, 2005, 42, 230-236.	2.8	31
130	An assessment of uncertainties in using volume-area modelling for computing the twenty-first century glacier contribution to sea-level change. Cryosphere, 2011, 5, 673-686.	1.5	31
131	Antarctic Ice Sheet and emission scenario controls on 21st-century extreme sea-level changes. Nature Communications, 2020, 11, 390.	5.8	31
132	Modelling the short-term response of the Greenland ice-sheet to global warming. Climate Dynamics, 1997, 13, 733-744.	1.7	30
133	A 800 year record of nitrate from the Lomonosovfonna ice core, Svalbard. Annals of Glaciology, 2002, 35, 261-265.	2.8	30
134	On the state dependency of fast feedback processes in (paleo) climate sensitivity. Geophysical Research Letters, 2014, 41, 6484-6492.	1.5	30
135	The K-transect on the western Greenland Ice Sheet: Surface energy balance (2003–2016). Arctic, Antarctic, and Alpine Research, 2018, 50, .	0.4	30
136	A wireless subglacial probe for deep ice applications. Journal of Glaciology, 2012, 58, 841-848.	1.1	29
137	The Arctic. Bulletin of the American Meteorological Society, 2020, 101, S239-S286.	1.7	29
138	Ice cores from Arctic sub-polar glaciers: chronology and post-depositional processes deduced from radioactivity measurements. Journal of Glaciology, 2003, 49, 149-158.	1.1	28
139	Accumulation variability derived from an ice core from coastal Dronning Maud Land, Antarctica. Annals of Claciology, 2004, 39, 339-345.	2.8	28
140	Accumulation variability over a small area in east Dronning Maud Land, Antarctica, as determined from shallow firn cores and snow pits: some implications for ice-core records. Journal of Glaciology, 2005, 51, 343-352.	1.1	28
141	Effects of spatial discretization in ice-sheet modelling using the shallow-ice approximation. Journal of Glaciology, 2006, 52, 89-98.	1.1	28
142	Current state and future perspectives on coupled ice-sheet – sea-level modelling. Quaternary Science Reviews, 2017, 169, 13-28.	1.4	28
143	The influence of ice sheets on temperature during the past 38ÂmillionÂyears inferred from aÂone-dimensional ice sheet–climate model. Climate of the Past, 2017, 13, 1243-1257.	1.3	28
144	Future Sea Level Change Under Coupled Model Intercomparison Project Phase 5 and Phase 6 Scenarios From the Greenland and Antarctic Ice Sheets. Geophysical Research Letters, 2021, 48, e2020GL091741.	1.5	28

#	Article	IF	CITATIONS
145	Determination of firn density in ice cores using image analysis. Journal of Glaciology, 2007, 53, 413-419.	1.1	26
146	The Impact of Uncertainties in Ice Sheet Dynamics on Sea-Level Allowances at Tide Gauge Locations. Journal of Marine Science and Engineering, 2017, 5, 21.	1.2	26
147	Lomonosovfonna and Holtedahlfonna ice cores reveal east–west disparities of the Spitsbergen environment since <scp>AD</scp> 1700. Journal of Glaciology, 2013, 59, 1069-1083.	1.1	24
148	Interaction of ice sheets and climate during the past 800 000 years. Climate of the Past, 2014, 10, 2135-2152.	1.3	24
149	Uncertainties in Long-Term Twenty-First Century Process-Based Coastal Sea-Level Projections. Surveys in Geophysics, 2019, 40, 1655-1671.	2.1	24
150	A new method to estimate ice age temperatures. Climate Dynamics, 2005, 24, 197-211.	1.7	23
151	Reconstructing the evolution of ice sheets, sea level, and atmospheric CO ₂ during the past 3.6 million years. Climate of the Past, 2021, 17, 361-377.	1.3	23
152	Projections of Global Delta Land Loss From Sea‣evel Rise in the 21st Century. Geophysical Research Letters, 2021, 48, e2021GL093368.	1.5	23
153	The Arctic. Bulletin of the American Meteorological Society, 2021, 102, S263-S316.	1.7	23
154	Using high-resolution tritium profiles to quantify the effects of melt on two Spitsbergen ice cores. Journal of Glaciology, 2011, 57, 1087-1097.	1.1	22
155	Can the carbon isotopic composition of methane be reconstructed from multi-site firn air measurements?. Atmospheric Chemistry and Physics, 2013, 13, 6993-7005.	1.9	22
156	10 years of mass-balance measurements along a transect near Kangerlussuaq, central West Greenland. Journal of Glaciology, 2001, 47, 157-158.	1.1	21
157	Ice core melt features in relation to Antarctic coastal climate. Antarctic Science, 2006, 18, 271-278.	0.5	21
158	Effect of isostasy on dynamical ice sheet modeling: A case study for Eurasia. Journal of Geophysical Research, 2008, 113, .	3.3	21
159	Mapping technique of climate fields between GCM's and ice models. Geoscientific Model Development, 2010, 3, 13-41.	1.3	21
160	Analyses of firn gas samples from Dronning Maud Land, Antarctica: Study of nonmethane hydrocarbons and methyl chloride. Journal of Geophysical Research, 2004, 109, .	3.3	20
161	Atmospheric CO2 during the 13th century AD: reconciliation of data from ice core measurements and stomatal frequency analysis. Tellus, Series B: Chemical and Physical Meteorology, 2005, 57, 351-355.	0.8	20
162	Brief communication: On calculating the sea-level contribution in marine ice-sheet models. Cryosphere, 2020, 14, 833-840.	1.5	20

#	Article	IF	CITATIONS
163	Effects of ice-front collapse and flood generation on a proglacial river channel near kangerlussuaq (SÃ,ndre StrÃ,mfjord), west greenland. Hydrological Processes, 1995, 9, 213-226.	1.1	19
164	The importance of thermodynamics for modeling the volume of the Greenland Ice Sheet. Journal of Geophysical Research, 1999, 104, 3887-3898.	3.3	19
165	Oxygen isotope variability in snow from western Dronning Maud Land, Antarctica and its relation to temperature. Tellus, Series B: Chemical and Physical Meteorology, 2005, 57, 423-435.	0.8	19
166	Sea-level change in the Dutch Wadden Sea. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2018, 97, 79-127.	0.6	19
167	Modelling ice sheet evolution and atmospheric CO ₂ during the Late Pliocene. Climate of the Past, 2019, 15, 1603-1619.	1.3	18
168	A study of ablation variations on the tongue of Hintereisferner, Austrian Alps. Journal of Glaciology, 1992, 38, 319-324.	1.1	17
169	Statistical extraction of volcanic sulphate from nonpolar ice cores. Journal of Geophysical Research, 2012, 117, .	3.3	17
170	Application of HadCM3@Bristolv1.0 simulations of paleoclimate as forcing for an ice-sheet model, ANICE2.1: set-up and benchmark experiments. Geoscientific Model Development, 2018, 11, 4657-4675.	1.3	17
171	Spatial gradients in snow layering and 10 m temperatures at two EPICA-Dronning Maud Land (Antarctica) pre-site-survey drill sites. Annals of Glaciology, 2000, 30, 13-19.	2.8	16
172	In situ produced 14C by cosmic ray muons in ablating Antarctic ice. Tellus, Series B: Chemical and Physical Meteorology, 2002, 54, 186-192.	0.8	16
173	Inferences from stable water isotopes on the Holocene evolution of Scharffenbergbotnen blue-ice area, East Antarctica. Journal of Glaciology, 2007, 53, 427-434.	1.1	16
174	Deformation and failure of the ice bridge on the Wilkins Ice Shelf, Antarctica. Annals of Glaciology, 2010, 51, 49-55.	2.8	16
175	Adaptation time to magnified flood hazards underestimated when derived from tide gauge records. Environmental Research Letters, 2020, 15, 074015.	2.2	16
176	How to interpret expert judgment assessments of 21st century sea-level rise. Climatic Change, 2015, 130, 87-100.	1.7	15
177	Simulation of the Greenland Ice Sheet over two glacial–interglacial cycles: investigating a sub-ice- shelf melt parameterization and relative sea level forcing in an ice-sheet–ice-shelf model. Climate of the Past, 2018, 14, 619-635.	1.3	15
178	Changes in the Isotopic Signature of Atmospheric Nitrous Oxide and Its Global Average Source During the Last Three Millennia. Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,757.	1.2	15
179	An Analytical Derivation of Ice-Shelf Basal Melt Based on the Dynamics of Meltwater Plumes. Journal of Physical Oceanography, 2019, 49, 917-939.	0.7	15
180	Processes of buildup and retreat of the Greenland Ice Sheet. Journal of Geophysical Research, 1999, 104, 3899-3906.	3.3	14

#	Article	IF	CITATIONS
181	On the importance of the albedo parameterization for the mass balance of the Greenland ice sheet in EC-Earth. Cryosphere, 2017, 11, 1949-1965.	1.5	14
182	Modeled Influence of Land Ice and CO ₂ on Polar Amplification and Paleoclimate Sensitivity During the Past 5 Million Years. Paleoceanography and Paleoclimatology, 2018, 33, 381-394.	1.3	14
183	Modelling the isotopic composition of snow using backward trajectories: a particular precipitation event in Dronning Maud Land, Antarctica. Annals of Glaciology, 2004, 39, 293-299.	2.8	13
184	A Stateâ€Dependent Quantification of Climate Sensitivity Based on Paleodata of the Last 2.1ÂMillion Years. Paleoceanography, 2017, 32, 1102-1114.	3.0	13
185	Sensitivity of Rhonegletscher, Switzerland, to climate change: experiments with a one-dimensional flowline model. Journal of Claciology, 1998, 44, 383-393.	1.1	13
186	OBLIMAP 2.0: a fast climate model–ice sheet model coupler including online embeddable mapping routines. Geoscientific Model Development, 2016, 9, 4111-4132.	1.3	13
187	Short-term volume changes of the Greenland ice sheet in response to doubled CO2 conditions. Tellus, Series B: Chemical and Physical Meteorology, 2022, 53, 94.	0.8	12
188	A 14 year mass-balance record of a blue-ice area in Antarctica. Annals of Glaciology, 2003, 37, 213-218.	2.8	12
189	Constraining N ₂ O emissions since 1940 using firn air isotope measurements in both hemispheres. Atmospheric Chemistry and Physics, 2017, 17, 4539-4564.	1.9	12
190	Radiocarbon analyses along the EDML ice core in Antarctica. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 157-165.	0.8	11
191	Extreme Snowmelt in Northern Greenland During Summer 2008. Eos, 2008, 89, 391-391.	0.1	11
192	Remapping of Greenland ice sheet surface mass balance anomalies for large ensemble sea-level change projections. Cryosphere, 2020, 14, 1747-1762.	1.5	11
193	Impact of asymmetric uncertainties in ice sheet dynamics on regional sea level projections. Natural Hazards and Earth System Sciences, 2017, 17, 2125-2141.	1.5	10
194	Atmospheric CO ₂ during the 13th century AD: reconciliation of data from ice core measurements and stomatal frequency analysis. Tellus, Series B: Chemical and Physical Meteorology, 2022, 57, 351.	0.8	9
195	Deuterium excess record from a small Arctic ice cap. Journal of Geophysical Research, 2008, 113, .	3.3	9
196	Modelling the regional climate and isotopic composition of Svalbard precipitation using REMO _{iso} : a comparison with available GNIP and ice core data. Hydrological Processes, 2011, 25, 3748-3759.	1.1	9
197	A computationally efficient depression-filling algorithm for digital elevation models, applied to proglacial lake drainage. Geoscientific Model Development, 2016, 9, 4451-4460.	1.3	9
198	The MMCOâ€EOT conundrum: Same benthic <i>l̂´</i> ¹⁸ 0, different CO ₂ . Paleoceanography, 2016, 31, 1270-1282.	3.0	9

#	Article	IF	CITATIONS
199	The Effect of Obliquityâ€Driven Changes on Paleoclimate Sensitivity During the Late Pleistocene. Geophysical Research Letters, 2018, 45, 6661-6671.	1.5	9
200	Interglacials of the Quaternary defined by northern hemispheric land ice distribution outside of Greenland. Nature Communications, 2020, 11, 5124.	5.8	9
201	On elevation models as input for mass-balance calculations of the Greenland ice sheet. Annals of Glaciology, 1996, 23, 181-186.	2.8	8
202	Recovering lateral variations in lithospheric strength from bedrock motion data using a coupled ice sheet-lithosphere model. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	8
203	From 14C/12C measurements towards radiocarbon dating of ice. Tellus, Series B: Chemical and Physical Meteorology, 1994, 46, 94-102.	0.8	7
204	Correlations Between Sea‣evel Components Are Driven by Regional Climate Change. Earth's Future, 2021, 9, e2020EF001825.	2.4	7
205	Short-term volume changes of the Greenland ice sheet in response to doubled CO2 conditions. Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 94-102.	0.8	6
206	Ice flow mapping with P-band SAR. , 2013, , .		6
207	The response of a simple Antarctic ice-flow model to temperature and sea-level fluctuations over the Cenozoic era. Annals of Glaciology, 2007, 46, 69-77.	2.8	5
208	Constraints on the δ ² H diffusion rate in firn from field measurements at Summit, Greenland. Cryosphere, 2015, 9, 1089-1103.	1.5	5
209	Dynamically coupling full Stokes and shallow shelf approximation for marine ice sheet flow using Elmer/Ice (v8.3). Geoscientific Model Development, 2018, 11, 4563-4576.	1.3	5
210	The Utrecht Finite Volume Ice-Sheet Model: UFEMISM (versionÂ1.0). Geoscientific Model Development, 2021, 14, 2443-2470.	1.3	5
211	Contribution of Land Water Storage Change to Regional Sea-Level Rise Over the Twenty-First Century. Frontiers in Earth Science, 2021, 9, .	0.8	5
212	Projections of global mean sea level rise calculated with a 2D energy-balance climate model and dynamic ice sheet models. Tellus, Series A: Dynamic Meteorology and Oceanography, 1997, 49, 486-502.	0.8	4
213	In-Situ Radiocarbon Production by Neutrons and Muons in an Antarctic Blue Ice Field at Scharffenbergbotnen: A Status Report. Radiocarbon, 2001, 43, 751-757.	0.8	4
214	Seasonal cycles of nonmethane hydrocarbons and methyl chloride, as derived from firn air from Dronning Maud Land, Antarctica. Journal of Geophysical Research, 2004, 109, .	3.3	4
215	Net effect of ice-sheet–atmosphere interactions reduces simulated transient Miocene Antarctic ice-sheet variability. Cryosphere, 2022, 16, 1315-1332.	1.5	4
216	Greenland: modelling. , 2004, , 437-458.		3

Greenland: modelling. , 2004, , 437-458. 216

#	Article	IF	CITATIONS
217	Ice-sheet modelling characteristics in sea-level-based temperature reconstructions over the last glacial cycle. Journal of Glaciology, 2006, 52, 149-158.	1.1	3
218	An ice flow modeling perspective on bedrock adjustment patterns of the Greenland ice sheet. Cryosphere, 2012, 6, 1263-1274.	1.5	3
219	Response to commentary by J. L. Bamber, W. P. Aspinall and R. M. Cooke (2016). Climatic Change, 2016, 137, 329-332.	1.7	3
220	A Comparison of the Mass Balances and Flows of Rabots Glaciar and Storglaciaren, Kebnekaise, Northern Sweden. Geografiska Annaler, Series A: Physical Geography, 1990, 72, 113.	0.6	2
221	Sea Level 2017 Conference Looks to Coastal Sea Level Rise Impact. Eos, 2018, 99, .	0.1	2
222	Reanalysis Surface Mass Balance of the Greenland Ice Sheet Along Kâ€Transect (2000–2014). Geophysical Research Letters, 2021, 48, e2021GL094602.	1.5	0
223	Editorial: Climate Services for Adaptation to Sea-Level Rise. Frontiers in Marine Science, 0, 9, .	1.2	0