Adam Slowik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8398625/publications.pdf

Version: 2024-02-01

315739 471509 1,659 65 17 38 citations h-index g-index papers 67 67 67 1334 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A feature selection approach for spam detection in social networks using gravitational force-based heuristic algorithm. Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 1633-1646.	4.9	8
2	Enhancement in Quality of Routing Service Using Metaheuristic PSO Algorithm in VANET Networks. Soft Computing, 2023, 27, 2739-2750.	3.6	13
3	Hybrid Approaches to Nature-Inspired Population-Based Intelligent Optimization for Industrial Applications. IEEE Transactions on Industrial Informatics, 2022, 18, 546-558.	11.3	17
4	Guest Editorial: Hybrid Approaches to Nature-Inspired Population-Based Intelligent Optimization for Industrial Applications. IEEE Transactions on Industrial Informatics, 2022, 18, 542-545.	11.3	4
5	Seabed Modelling by Means of Airborne Laser Bathymetry Data and Imbalanced Learning for Offshore Mapping. Sensors, 2022, 22, 3121.	3.8	5
6	A novel hybrid hypervolume indicator and reference vector adaptation strategies based evolutionary algorithm for many-objective optimization. Engineering With Computers, 2021, 37, 3017-3035.	6.1	39
7	An improved bat optimization algorithm to solve the tasks scheduling problem in open shop. Neural Computing and Applications, 2021, 33, 1559-1573.	5.6	18
8	MOSOA: A new multi-objective seagull optimization algorithm. Expert Systems With Applications, 2021, 167, 114150.	7.6	153
9	Hybrid crow search and uniform crossover algorithm-based clustering for top-N recommendation system. Neural Computing and Applications, 2021, 33, 7145-7164.	5.6	11
10	EMoSOA: a new evolutionary multi-objective seagull optimization algorithm for global optimization. International Journal of Machine Learning and Cybernetics, 2021, 12, 571-596.	3.6	88
11	Techno-Economic Feasibility Analysis of Grid-Connected Microgrid Design by Using a Modified Multi-Strategy Fusion Artificial Bee Colony Algorithm. Energies, 2021, 14, 190.	3.1	16
12	Classification Based on Brain Storm Optimization With Feature Selection. IEEE Access, 2021, 9, 16582-16590.	4.2	6
13	Multi-objective hybrid genetic algorithm for task scheduling problem in cloud computing. Neural Computing and Applications, 2021, 33, 13075-13088.	5.6	44
14	Improvement of grey wolf optimizer with adaptive middle filter to adjust support vector machine parameters to predict diabetes complications. Neural Computing and Applications, 2021, 33, 15205-15228.	5.6	7
15	Orthogonal Latin squares-based firefly optimization algorithm for industrial quadratic assignment tasks. Neural Computing and Applications, 2021, 33, 16675-16696.	5.6	4
16	A Self-Adaptive Mutation Neural Architecture Search Algorithm Based on Blocks. IEEE Computational Intelligence Magazine, 2021, 16, 67-78.	3.2	93
17	Adaptive crossover operator based multi-objective binary genetic algorithm for feature selection in classification. Knowledge-Based Systems, 2021, 227, 107218.	7.1	81
18	Energy consumption prediction of appliances using machine learning and multi-objective binary grey wolf optimization for feature selection. Applied Soft Computing Journal, 2021, 111, 107745.	7.2	26

#	Article	IF	CITATIONS
19	Classification of Airborne Laser Bathymetry Data Using Artificial Neural Networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 1959-1966.	4.9	10
20	Handwritten Character Recognition Based on Improved Convolutional Neural Network. Intelligent Automation and Soft Computing, 2021, 29, 497-509.	2.1	5
21	Use of Machine Learning Methods for Predicting Amount of Bioethanol Obtained from Lignocellulosic Biomass with the Use of Ionic Liquids for Pretreatment. Energies, 2021, 14, 243.	3.1	42
22	Population Management Approaches in the OPn Algorithm. Lecture Notes in Computer Science, 2021, , 402-414.	1.3	1
23	A population-based algorithm with the selection of evaluation precision and size of the population. Applied Soft Computing Journal, 2021, 115, 108154.	7.2	2
24	Hybridization of Grey Wolf Optimizer and Crow Search Algorithm Based on Dynamic Fuzzy Learning Strategy for Large-Scale Optimization. IEEE Access, 2020, 8, 161593-161611.	4.2	13
25	An improved Jaya algorithm with a modified swap operator for solving team formation problem. Soft Computing, 2020, 24, 16627-16641.	3.6	11
26	Introduction to the Special Issue on Nature-Inspired Optimization Methods in Fuzzy Systems. IEEE Transactions on Fuzzy Systems, 2020, 28, 1019-1022.	9.8	1
27	Evolutionary algorithms and their applications to engineering problems. Neural Computing and Applications, 2020, 32, 12363-12379.	5.6	261
28	Multi-objective orthogonal opposition-based crow search algorithm for large-scale multi-objective optimization. Neural Computing and Applications, 2020, 32, 13715-13746.	5.6	47
29	Modified African Buffalo Optimization for Strategic Integration of Battery Energy Storage in Distribution Networks. IEEE Access, 2020, 8, 14289-14301.	4.2	49
30	Artificial Intelligence Technique for Gene Expression by Tumor RNA-Seq Data: A Novel Optimized Deep Learning Approach. IEEE Access, 2020, 8, 22874-22883.	4.2	71
31	Multipopulation Nature-Inspired Algorithm (MNIA) for the Designing of Interpretable Fuzzy Systems. IEEE Transactions on Fuzzy Systems, 2020, 28, 1125-1139.	9.8	14
32	Fuzzy Control of Exploration and Exploitation Trade-Off with On-Line Convergence Rate Estimation in Evolutionary Algorithms. Lecture Notes in Computer Science, 2020, , 454-463.	1.3	0
33	Defect Prediction in Software Using Predictive Models Based on Historical Data. Advances in Intelligent Systems and Computing, 2019, , 96-103.	0.6	1
34	An Ameliorative Hybrid Algorithm for Solving the Capacitated Vehicle Routing Problem. IEEE Access, 2019, 7, 175454-175465.	4.2	21
35	Introduction to the Special Section on Nature Inspired Methods in Industry Applications. IEEE Transactions on Industrial Informatics, 2018, 14, 1001-1003.	11.3	2
36	Nature Inspired Methods and Their Industry Applicationsâ€"Swarm Intelligence Algorithms. IEEE Transactions on Industrial Informatics, 2018, 14, 1004-1015.	11.3	164

3

#	Article	IF	Citations
37	Por \tilde{A}^3 wnanie system \tilde{A}^3 w rozmytych w procesie sterowania sygnalizacj \tilde{A} \hat{A} >wietln \tilde{A} Przeglad Elektrotechniczny, 2018, 1, 122-125.	0.2	О
38	Zastosowanie kartezja $\mathring{\rm A}$,, skiego programowania genetycznego do projektowania filtr $\tilde{\rm A}^3$ w cyfrowych do przetwarzania obraz $\tilde{\rm A}^3$ w. Przeglad Elektrotechniczny, 2018, 1, 76-79.	0.2	0
39	Implementacja systemu rozmytego przeznaczonego do sterowania instalacjÄ centralnego ogrzewania. Przeglad Elektrotechniczny, 2018, 1, 80-83.	0.2	0
40	Efficient Creation of Population of Stable Biquad Sections with Predefined Stability Margin for Evolutionary Digital Filter Design Methods. Lecture Notes in Computer Science, 2017, , 451-460.	1.3	1
41	Using a Hierarchical Fuzzy System for Traffic Lights Control Process. Lecture Notes in Computer Science, 2017, , 292-301.	1.3	2
42	On Fast Randomly Generation of Population of Minimal Phase and Stable Biquad Sections for Evolutionary Digital Filters Design Methods. Lecture Notes in Computer Science, 2016, , 511-520.	1.3	1
43	An Application of Fuzzy Logic to Traffic Lights Control and Simulation in Real Time. Lecture Notes in Computer Science, 2016, , 266-275.	1.3	1
44	Optymalizacja procesu wiercenia otwor \tilde{A}^3 w w elektronicznych på,ytach drukowanych przy uå $\frac{1}{4}$ yciu algorytmu roju czästek. Przeglad Elektrotechniczny, 2016, 1, 12-15.	0.2	0
45	Comparative Study on Bio-inspired Global Optimization Algorithms in Minimal Phase Digital Filters Design. Lecture Notes in Computer Science, 2014, , 217-226.	1.3	0
46	Application of Geometric Differential Evolution Algorithm to Design Minimal Phase Digital Filters with Atypical Characteristics for Their Hardware or Software Implementation. Lecture Notes in Computer Science, 2013, , 67-78.	1.3	1
47	Introduction to the Special Section on Intelligent Systems. IEEE Transactions on Industrial Electronics, 2012, 59, 3046-3048.	7.9	0
48	Evolutionary Multi-objective Optimization of Personal Computer Hardware Configurations. Lecture Notes in Computer Science, 2012, , 359-367.	1.3	0
49	Type-2 Fuzzy Logic Control of Trade-off between Exploration and Exploitation Properties of Genetic Algorithms. Lecture Notes in Computer Science, 2012, , 368-376.	1.3	2
50	Application of an Adaptive Differential Evolution Algorithm With Multiple Trial Vectors to Artificial Neural Network Training. IEEE Transactions on Industrial Electronics, 2011, 58, 3160-3167.	7.9	53
51	Application of evolutionary algorithm to design minimal phase digital filters with non-standard amplitude characteristics and finite bit word length. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2011, 59, 125-135.	0.8	16
52	Fuzzy Control of Trade-Off between Exploration and Exploitation Properties of Evolutionary Algorithms. Lecture Notes in Computer Science, 2011, , 59-66.	1.3	3
53	Hybridization of Evolutionary Algorithm with Yule Walker Method to Design Minimal Phase Digital Filters with Arbitrary Amplitude Characteristics. Lecture Notes in Computer Science, 2011, , 67-74.	1.3	4
54	Particle Swarm Optimization. The Electrical Engineering Handbook, 2011, , 1-9.	0.2	4

#	Article	IF	CITATION
55	Evolutionary Computation. The Electrical Engineering Handbook, 2011, , 1-9.	0.2	0
56	Steering of Balance between Exploration and Exploitation Properties of Evolutionary Algorithms - Mix Selection. Lecture Notes in Computer Science, 2010, , 213-220.	1.3	14
57	Evolutionary Optimization of Number of Gates in PLA Circuits Implemented in VLSI Circuits. Lecture Notes in Computer Science, 2009, , 363-368.	1.3	0
58	Multi-objective optimization of surface grinding process with the use of evolutionary algorithm with remembered Pareto set. International Journal of Advanced Manufacturing Technology, 2008, 37, 657-669.	3.0	29
59	Evolutionary design of combinational digital circuits: State of the art, main problems, and future trends. , 2008, , .		12
60	Training of artificial neural networks using differential evolution algorithm. , 2008, , .		94
61	Design and Multi-Objective Optimization of Combinational Digital Circuits Using Evolutionary Algorithm with Multi-Layer Chromosomes. Lecture Notes in Computer Science, 2008, , 479-488.	1.3	4
62	Design and Optimization of IIR Digital Filters with Non-standard Characteristics Using Continuous Ant Colony Optimization Algorithm. Lecture Notes in Computer Science, 2008, , 395-400.	1.3	11
63	Design and Optimization of IIR Digital Filters with Non-Standard Characteristics Using Particle Swarm Optimization Algorithm. , 2007, , .		13
64	Partitioning of VLSI Circuits on Subcircuits with Minimal Number of Connections Using Evolutionary Algorithm. Lecture Notes in Computer Science, 2006, , 470-478.	1.3	13
65	Design and Optimization of Combinational Digital Circuits Using Modified Evolutionary Algorithm. Lecture Notes in Computer Science, 2004, , 468-473.	1.3	17