Gabriel Marroig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8398226/publications.pdf

Version: 2024-02-01

201658 206102 3,054 51 27 48 citations h-index g-index papers 60 60 60 2043 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The pre-eminent role of directional selection in generating extreme morphological change in glyptodonts (Cingulata; Xenarthra). Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212521.	2.6	9
2	Development and function explain the modular evolution of phalanges in gecko lizards. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212300.	2.6	5
3	Detecting patterns of correlational selection with sampling error: A simulation study. Evolution; International Journal of Organic Evolution, 2022, 76, 207-224.	2.3	2
4	Measuring the magnitude of morphological integration: The effect of differences in morphometric representations and the inclusion of size. Evolution; International Journal of Organic Evolution, 2019, 73, 2518-2528.	2.3	23
5	Genomic Perspective on Multivariate Variation, Pleiotropy, and Evolution. Journal of Heredity, 2019, 110, 479-493.	2.4	6
6	A multiple peak adaptive landscape based on feeding strategies and roosting ecology shaped the evolution of cranial covariance structure and morphological differentiation in phyllostomid bats. Evolution; International Journal of Organic Evolution, 2019, 73, 961-981.	2.3	46
7	Evolution of morphological integration in the skull of Carnivora (Mammalia): Changes in Canidae lead to increased evolutionary potential of facial traits. Evolution; International Journal of Organic Evolution, 2018, 72, 1399-1419.	2.3	53
8	Contrasting patterns of RUNX2 repeat variations are associated with palate shape in phyllostomid bats and New World primates. Scientific Reports, 2018, 8, 7867.	3.3	12
9	Timing and patterns of diversification in the Neotropical bat genus Pteronotus (Mormoopidae). Molecular Phylogenetics and Evolution, 2017, 108, 61-69.	2.7	34
10	Evolutionary processes and its environmental correlates in the cranial morphology of western chipmunks (<i>Tamias</i>). Evolution; International Journal of Organic Evolution, 2017, 71, 595-609.	2.3	11
11	Intense natural selection preceded the invasion of new adaptive zones during the radiation of New World leaf-nosed bats. Scientific Reports, 2017, 7, 11076.	3.3	43
12	The evolution of phenotypic integration: How directional selection reshapes covariation in mice. Evolution; International Journal of Organic Evolution, 2017, 71, 2370-2380.	2.3	29
13	Evolution of a complex phenotype with biphasic ontogeny: Contribution of development versus function and climatic variation to skull modularity in toads. Ecology and Evolution, 2017, 7, 10752-10769.	1.9	13
14	Morphological and dietary responses of chipmunks to a century of climate change. Global Change Biology, 2016, 22, 3233-3252.	9.5	29
15	Modularity: Genes, Development, and Evolution. Annual Review of Ecology, Evolution, and Systematics, 2016, 47, 463-486.	8.3	132
16	A case study of extant and extinct Xenarthra cranium covariance structure: implications and applications to paleontology. Paleobiology, 2016, 42, 465-488.	2.0	14
17	Integrating multiple evidences in taxonomy: species diversity and phylogeny of mustached bats (Mormoopidae: Pteronotus). Molecular Phylogenetics and Evolution, 2016, 103, 184-198.	2.7	50
18	Evolution of the Genotype-to-Phenotype Map and the Cost of Pleiotropy in Mammals. Genetics, 2016, 204, 1601-1612.	2.9	30

#	Article	IF	Citations
19	High evolutionary constraints limited adaptive responses to past climate changes in toad skulls. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161783.	2.6	24
20	Landmark precision and reliability and accuracy of linear distances estimated by using 3D computed micro-tomography and the open-source TINA Manual Landmarking Tool software. Frontiers in Zoology, 2015, 12, 12.	2.0	9
21	Directional selection can drive the evolution of modularity in complex traits. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 470-475.	7.1	105
22	Rate of evolutionary change in cranial morphology of the marsupial genus <i>Monodelphis</i> is constrained by the availability of additive genetic variation. Journal of Evolutionary Biology, 2015, 28, 973-985.	1.7	38
23	EvolQG - An R package for evolutionary quantitative genetics. F1000Research, 2015, 4, 925.	1.6	64
24	EvolQG - An R package for evolutionary quantitative genetics. F1000Research, 2015, 4, 925.	1.6	34
25	Quantitative Genetics and Modularity in Cranial and Mandibular Morphology of Calomys expulsus. Evolutionary Biology, 2014, 41, 619-636.	1.1	28
26	Size and shape in cranial evolution of 2 marsupial genera:DidelphisandPhilander(Didelphimorphia,) Tj ETQq0 0 0	rgBT ₃ /Ove	erlock 10 Tf 50
27	SIZE VARIATION, GROWTH STRATEGIES, AND THE EVOLUTION OF MODULARITY IN THE MAMMALIAN SKULL. Evolution; International Journal of Organic Evolution, 2013, 67, 3305-3322.	2.3	83
28	MODULARITY, NOISE, AND NATURAL SELECTION. Evolution; International Journal of Organic Evolution, 2012, 66, 1506-1524.	2.3	50
29	Selection Response Decomposition (SRD): A New Tool for Dissecting Differences and Similarities Between Matrices. Evolutionary Biology, 2011, 38, 225-241.	1.1	21
30	Skull modularity in neotropical marsupials and monkeys: size variation and evolutionary constraint and flexibility. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2010, 314B, 663-683.	1.3	93
31	SIZE AS A LINE OF LEAST RESISTANCE II: DIRECT SELECTION ON SIZE OR CORRELATED RESPONSE DUE TO CONSTRAINTS?. Evolution; International Journal of Organic Evolution, 2010, 64, 1470-88.	2.3	62
32	Non-volant mammals, Parque Nacional do Catimbau,ÂVale do Catimbau, BuÃque, state of Pernambuco, Brazil, with karyologic data. Check List, 2010, 6, 180.	0.4	21
33	Covariance structure in the skull of Catarrhini: a case of pattern stasis and magnitude evolution. Journal of Human Evolution, 2009, 56, 417-430.	2.6	61
34	The Evolution of Modularity in the Mammalian Skull I: Morphological Integration Patterns and Magnitudes. Evolutionary Biology, 2009, 36, 118-135.	1,1	261
35	The Evolution of Modularity in the Mammalian Skull II: Evolutionary Consequences. Evolutionary Biology, 2009, 36, 136-148.	1.1	198
36	Paleogeography of the South Atlantic: a Route for Primates and Rodents into the New World?. , 2009, , 55-68.		61

#	Article	IF	Citations
37	Research Article Comparing covariance matrices: random skewers method compared to the common principal components model. Genetics and Molecular Biology, 2007, 30, 461-469.	1.3	133
38	When size makes a difference: allometry, life-history and morphological evolution of capuchins (Cebus) and squirrels (Saimiri) monkeys (Cebinae, Platyrrhini). BMC Evolutionary Biology, 2007, 7, 20.	3.2	43
39	SIZE AS A LINE OF LEAST EVOLUTIONARY RESISTANCE: DIET AND ADAPTIVE MORPHOLOGICAL RADIATION IN NEW WORLD MONKEYS. Evolution; International Journal of Organic Evolution, 2005, 59, 1128-1142.	2.3	271
40	SIZE AS A LINE OF LEAST EVOLUTIONARY RESISTANCE: DIET AND ADAPTIVE MORPHOLOGICAL RADIATION IN NEW WORLD MONKEYS. Evolution; International Journal of Organic Evolution, 2005, 59, 1128.	2.3	3
41	Limites climáticos e vegetacionais das distribuições de <i>Cebus nigritus</i> e <i>Cebus robustus</i> (Cebinae, Platyrrhini). Neotropical Primates, 2005, 13, 14-19.	0.1	71
42	Size as a line of least evolutionary resistance: diet and adaptive morphological radiation in New World monkeys. Evolution; International Journal of Organic Evolution, 2005, 59, 1128-42.	2.3	73
43	Systematics and evolution of the jacchus group of marmosets (Platyrrhini). American Journal of Physical Anthropology, 2004, 123, 11-22.	2.1	27
44	Cranial evolution in sakis (Pithecia, Platyrrhini) I: Interspecific differentiation and allometric patterns. American Journal of Physical Anthropology, 2004, 125, 266-278.	2.1	40
45	Did Natural Selection or Genetic Drift Produce the Cranial Diversification of Neotropical Monkeys?. American Naturalist, 2004, 163, 417-428.	2.1	123
46	Cranial evolution in sakis (Pithecia, Platyrrhini) II: evolutionary processes and morphological integration. Journal of Evolutionary Biology, 2003, 17, 144-155.	1.7	70
47	Evolutionary rates and stabilizing selection in large-bodied opossum skulls (Didelphimorphia:) Tj ETQq $1\ 1\ 0.7843$	14.rgBT /C	Overlock 10 T
48	A COMPARISON OF PHENOTYPIC VARIATION AND COVARIATION PATTERNS AND THE ROLE OF PHYLOGENY, ECOLOGY, AND ONTOGENY DURING CRANIAL EVOLUTION OF NEW WORLD MONKEYS. Evolution; International Journal of Organic Evolution, 2001, 55, 2576-2600.	2.3	353
49	A COMPARISON OF PHENOTYPIC VARIATION AND COVARIATION PATTERNS AND THE ROLE OF PHYLOGENY, ECOLOGY, AND ONTOGENY DURING CRANIAL EVOLUTION OF NEW WORLD MONKEYS. Evolution; International Journal of Organic Evolution, 2001, 55, 2576.	2.3	16
50	EvolQG - An R package for evolutionary quantitative genetics. F1000Research, 0, 4, 925.	1.6	18
51	Morphological integration and cranial modularity in six genera of echimyid rodents (Rodentia:) Tj ETQq1 1 0.784	314 rgBT / 1.3	Oyerlock 10°