Raphaël Lis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8397892/publications.pdf

Version: 2024-02-01

		331670	395702
34	2,418	21	33
papers	citations	h-index	g-index
2.5	25	25	4507
35	35	35	4527
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature, 2014, 505, 97-102.	27.8	496
2	Reprogramming human endothelial cells to haematopoietic cells requires vascular induction. Nature, 2014, 511, 312-318.	27.8	211
3	Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis. Nature Medicine, 2016, 22, 154-162.	30.7	201
4	Conversion of adult endothelium to immunocompetent haematopoietic stem cells. Nature, 2017, 545, 439-445.	27.8	191
5	The transcription factor XBP1 is selectively required for eosinophil differentiation. Nature Immunology, 2015, 16, 829-837.	14.5	154
6	Platelet-derived SDF-1 primes the pulmonary capillary vascular niche to drive lung alveolar regeneration. Nature Cell Biology, 2015, 17, 123-136.	10.3	120
7	Pluripotent stem cell-derived epithelium misidentified as brain microvascular endothelium requires ETS factors to acquire vascular fate. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	119
8	Tumor associated mesenchymal stem cells protects ovarian cancer cells from hyperthermia through CXCL12. International Journal of Cancer, 2011, 128, 715-725.	5.1	96
9	Oncologic Trogocytosis of an Original Stromal Cells Induces Chemoresistance of Ovarian Tumours. PLoS ONE, 2008, 3, e3894.	2.5	84
10	Molecular determinants of nephron vascular specialization in the kidney. Nature Communications, 2019, 10, 5705.	12.8	83
11	Human ESC-derived hemogenic endothelial cells undergo distinct waves of endothelial to hematopoietic transition. Blood, 2013, 121, 770-780.	1.4	78
12	Mesenchymal stem cells enhance ovarian cancer cell infiltration through IL6 secretion in an amniochorionic membrane based 3D model. Journal of Translational Medicine, 2013, 11, 28.	4.4	68
13	Endothelial jagged-2 sustains hematopoietic stem and progenitor reconstitution after myelosuppression. Journal of Clinical Investigation, 2017, 127, 4242-4256.	8.2	63
14	CCL2/CCL5 secreted by the stroma induce IL-6/PYK2 dependent chemoresistance in ovarian cancer. Molecular Cancer, 2018, 17, 47.	19.2	59
15	Copy Number Variation Analysis of Matched Ovarian Primary Tumors and Peritoneal Metastasis. PLoS ONE, 2011, 6, e28561.	2.5	47
16	Predictive markers of chemoresistance in advanced stages epithelial ovarian carcinoma. Gynecologic Oncology, 2015, 136, 112-120.	1.4	45
17	Mesenchymal Cell Interaction with Ovarian Cancer Cells Triggers Pro-Metastatic Properties. PLoS ONE, 2012, 7, e38340.	2.5	44
18	Human Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells: Current Controversies. Frontiers in Physiology, 2021, 12, 642812.	2.8	33

#	Article	IF	CITATIONS
19	Specification of fetal liver endothelial progenitors to functional zonated adult sinusoids requires c-Maf induction. Cell Stem Cell, 2022, 29, 593-609.e7.	11.1	32
20	Akt-Activated Endothelium Constitutes the Niche for Residual Disease and Resistance to Bevacizumab in Ovarian Cancer. Molecular Cancer Therapeutics, 2014, 13, 3123-3136.	4.1	29
21	Post-translational control of T cell development by the ESCRT protein CHMP5. Nature Immunology, 2017, 18, 780-790.	14.5	29
22	Role of mesenchymal cells in the natural history of ovarian cancer: a review. Journal of Translational Medicine, 2014, 12, 271.	4.4	23
23	Akt-activated endothelium promotes ovarian cancer proliferation through notch activation. Journal of Translational Medicine, 2019, 17, 194.	4.4	20
24	Sox17 drives functional engraftment of endothelium converted from non-vascular cells. Nature Communications, 2017, 8, 13963.	12.8	18
25	In vitro conversion of adult murine endothelial cells to hematopoietic stem cells. Nature Protocols, 2018, 13, 2758-2780.	12.0	17
26	Histone variant H3.3 maintains adult haematopoietic stem cell homeostasis by enforcing chromatin adaptability. Nature Cell Biology, 2022, 24, 99-111.	10.3	17
27	Notch hyper-activation drives trans-differentiation of hESC-derived endothelium. Stem Cell Research, 2016, 17, 391-400.	0.7	11
28	Efficient hemogenic endothelial cell specification by RUNX1 is dependent on baseline chromatin accessibility of RUNX1-regulated TGFI ² target genes. Genes and Development, 2021, 35, 1475-1489.	5.9	11
29	Endothelial Jak3 expression enhances pro-hematopoietic angiocrine function in mice. Communications Biology, 2021, 4, 406.	4.4	9
30	Haematopoietic stem cell reprogramming and the hope for a universal blood product. FEBS Letters, 2019, 593, 3253-3265.	2.8	4
31	Wading through the waves of human embryonic hemogenesis. Cell Cycle, 2013, 12, 859-860.	2.6	2
32	Direct Conversion of Adult Endothelial Cells into Immunecompetent Long-Term Engraftable Clinically Scalable Hematopoietic Stem Cells: Pathway to Therapeutic Translation. Blood, 2016, 128, 372-372.	1.4	1
33	Reprogrammed Adult Human Endothelium into Hematopoietic Stem Cells Yields Functional T Cells In Vivo. Blood, 2018, 132, 169-169.	1.4	1
34	Angiocrine ANGPTL2 executes HSC functions inÂendothelial niche. Blood, 2022, 139, 1433-1434.	1.4	0