Tetsushi Taguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8397796/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials, 2005, 26, 4847-4855.	11.4	638
2	Hydroxyapatite Formation on/in Poly(vinyl alcohol) Hydrogel Matrices Using a Novel Alternate Soaking Process. Chemistry Letters, 1998, 27, 711-712.	1.3	246
3	In vitro and in vivo biocompatibility and corrosion behaviour of a bioabsorbable magnesium alloy coated with octacalcium phosphate and hydroxyapatite. Acta Biomaterialia, 2015, 11, 520-530.	8.3	173
4	Apatite coating on hydrophilic polymer-grafted poly(ethylene) films using an alternate soaking process. Biomaterials, 2000, 22, 53-58.	11.4	103
5	Preparation and characterization of apatite deposited on silk fabric using an alternate soaking process. , 2000, 50, 344-352.		100
6	Apatite formation on/in hydrogel matrices using an alternate soaking process: II. Effect of swelling ratios of poly(vinyl alcohol) hydrogel matrices on apatite formation. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 331-339.	3.5	99
7	Collagen-immobilized poly (vinyl alcohol) as an artificial cornea scaffold that supports a stratified corneal epithelium. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 76B, 56-63.	3.4	85
8	Encapsulation of chondrocytes in injectable alkali-treated collagen gels prepared using poly(ethylene) Tj ETQq0 0	0 ₁₉ 87/0	verlock 10 T 84
9	Repair of full-thickness articular cartilage defects using injectable type II collagen gel embedded with cultured chondrocytes in a rabbit model. Journal of Orthopaedic Science, 2008, 13, 225-232.	1.1	84
10	Cartilaginous tissue formation from bone marrow cells using rotating wall vessel (RWV) bioreactor. Biotechnology and Bioengineering, 2006, 95, 1003-1008.	3.3	73
11	Apatite formation on/in hydrogel matrices using an alternate soaking process (III) : Effect of physico-chemical factors on apatite formation on/in poly(vinyl alcohol) hydrogel matrices. Journal of	3.5	66

11	physico-chemical factors on apatite formation on/in poly(vinyl alcohol) hydrogel matrices. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 795-804.	3.5	66
12	Quick self-healing and thermo-reversible liposome gel. Colloids and Surfaces B: Biointerfaces, 2011, 82, 196-202.	5.0	65
13	Bonding of soft tissues using a novel tissue adhesive consisting of a citric acid derivative and collagen. Materials Science and Engineering C, 2004, 24, 775-780.	7.3	61
14	Collagen immobilized PVA hydrogel-hydroxyapatite composites prepared by kneading methods as a material for peripheral cuff of artificial cornea. Materials Science and Engineering C, 2004, 24, 729-735.	7.3	58
15	An improved method to prepare hyaluronic acid and type II collagen composite matrices. Journal of Biomedical Materials Research Part B, 2002, 61, 330-336.	3.1	55
16	Characterization of alkali-treated collagen gels prepared by different crosslinkers. Journal of Materials Science: Materials in Medicine, 2008, 19, 1297-1305.	3.6	54
17	Improved Synthesis with High Yield and Increased Molecular Weight of Poly(α,β-malic acid) by Direct Polycondensation. Biomacromolecules, 2004, 5, 169-174.	5.4	50
18	pH-responsive swelling behavior of collagen gels prepared by novel crosslinkers based on naturally	8.3	50

derived di- or tricarboxylic acids. Acta Biomaterialia, 2007, 3, 89-94.

#	Article	IF	CITATIONS
19	Physicochemical properties of gelatin gels prepared using citric acid derivative. Materials Science and Engineering C, 2004, 24, 781-785.	7.3	48
20	Amniotic membrane immobilized poly(vinyl alcohol) hybrid polymer as an artificial cornea scaffold that supports a stratified and differentiated corneal epithelium. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 81B, 201-206.	3.4	48
21	Underwater-adhesive microparticle dressing composed of hydrophobically-modified Alaska pollock gelatin for gastrointestinal tract wound healing. Acta Biomaterialia, 2019, 99, 387-396.	8.3	44
22	Injectable in situ forming drug delivery system for cancer chemotherapy using a novel tissue adhesive: Characterization and in vitro evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 66, 383-390.	4.3	42
23	Enhanced Sealing by Hydrophobic Modification of Alaska Pollockâ€Derived Gelatinâ€Based Surgical Sealants for the Treatment of Pulmonary Air Leaks. Macromolecular Bioscience, 2017, 17, 1600349.	4.1	41
24	Multifunctional Hydrophobized Microparticles for Accelerated Wound Healing after Endoscopic Submucosal Dissection. Small, 2019, 15, e1901566.	10.0	41
25	Biocompatible high-strength glue consisting of citric acid derivative and collagen. Materials Science and Engineering C, 2006, 26, 9-13.	7.3	40
26	Enhanced tissue penetration-induced high bonding strength of a novel tissue adhesive composed of cholesteryl group-modified gelatin and disuccinimidyl tartarate. Colloids and Surfaces B: Biointerfaces, 2012, 91, 48-56.	5.0	39
27	A study on hydroxyapatite formation on/in the hydroxyl groups-bearing nonionic hydrogels. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 19-32.	3.5	38
28	Ca-adsorption and apatite deposition on silk fabrics modified with phosphate polymer chains. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 787-793.	3.5	37
29	Enhanced insulin secretion of physically crosslinked pancreatic β-cells by using a poly(ethylene glycol) derivative with oleyl groups. Acta Biomaterialia, 2009, 5, 2945-2952.	8.3	35
30	Preparation of a novel functional hydrogel consisting of sulfated glucoside-bearing polymer: Activation of basic fibroblast growth factor. , 1998, 41, 386-391.		32
31	Enhanced angiogenesis of growth factor-free porous biodegradable adhesive made with hexanoyl group-modified gelatin. Biomaterials, 2015, 63, 14-23.	11.4	32
32	Biodegradable Adhesives Composed of Human Serum Albumin and Organic Acid-based Crosslinkers with Active Ester Groups. Journal of Bioactive and Compatible Polymers, 2009, 24, 546-559.	2.1	30
33	Enhanced Skin Adhesive Property of Hydrophobically Modified Poly(vinyl alcohol) Films. ACS Omega, 2020, 5, 1519-1527.	3.5	30
34	Synthesis of high molecular weight poly(α,β-malic acid) for biomedical use by direct polycondensation. Polymer Degradation and Stability, 2003, 81, 525-530.	5.8	29
35	Osteoclast-Responsive, Injectable Bone of Bisphosphonated-Nanocellulose that Regulates Osteoclast/Osteoblast Activity for Bone Regeneration. Biomacromolecules, 2019, 20, 1385-1393.	5.4	28
36	Effect of alkyl chain length on the interfacial strength of surgical sealants composed of hydrophobically-modified Alaska-pollock-derived gelatins and poly(ethylene)glycol-based four-armed crosslinker. Colloids and Surfaces B: Biointerfaces, 2016, 146, 212-220.	5.0	27

#	Article	IF	CITATIONS
37	Robust Sealing of Blood Vessels with Cholesteryl Group-Modified, Alaska Pollock-Derived Gelatin-Based Biodegradable Sealant Under Wet Conditions. Journal of Biomedical Nanotechnology, 2016, 12, 128-134.	1.1	26
38	Unusual Cell Adhesion and Antithrombogenic Behavior of Citric Acid-Cross-Linked Collagen Matrices. Biomacromolecules, 2007, 8, 1992-1998.	5.4	25
39	Adhesive properties and biocompatibility of tissue adhesives composed of various hydrophobically modified gelatins and disuccinimidyl tartrate. Journal of Bioactive and Compatible Polymers, 2012, 27, 481-498.	2.1	25
40	Biocompatible nanostructured solid adhesives for biological soft tissues. Acta Biomaterialia, 2017, 57, 404-413.	8.3	25
41	The effect of VEGF-immobilized nickel-free high-nitrogen stainless steel on viability and proliferation of vascular endothelial cells. Colloids and Surfaces B: Biointerfaces, 2012, 92, 1-8.	5.0	24
42	Development of A Novel Glue Consisting of Naturally-Derived Biomolecules: Citric Acid and Human Serum Albumin. Journal of Nanoscience and Nanotechnology, 2007, 7, 742-747.	0.9	23
43	The growth of a vascular network inside a collagen–citric acid derivative hydrogel in rats. Biomaterials, 2009, 30, 3580-3587.	11.4	23
44	Immobilization of Human Vascular Endothelial Growth Factor (VEGF165) onto Biomaterials: An Evaluation of the Biological Activity of Immobilized VEGF165. Journal of Bioactive and Compatible Polymers, 2000, 15, 309-320.	2.1	22
45	Antitumor effect of an injectable in-situ forming drug delivery system composed of a novel tissue adhesive containing doxorubicin hydrochloride. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67, 676-681.	4.3	22
46	Rheological evaluation of gelatin gels prepared with a citric acid derivative as a novel cross-linker. Materials Science and Engineering C, 2004, 24, 787-790.	7.3	21
47	An Antithrombogenic Citric Acidâ€Crosslinked Gelatin with Endothelialization Activity. Advanced Healthcare Materials, 2012, 1, 573-581.	7.6	21
48	A Thixotropic, Cell-Infiltrative Nanocellulose Hydrogel That Promotes in Vivo Tissue Remodeling. ACS Biomaterials Science and Engineering, 2020, 6, 946-958.	5.2	20
49	A pH-driven genipin gelator to engineer decellularized extracellular matrix-based tissue adhesives. Acta Biomaterialia, 2021, 131, 211-221.	8.3	20
50	Designing an anti-inflammatory and tissue-adhesive colloidal dressing for wound treatment. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110737.	5.0	19
51	Enhanced Bonding Strength of Hydrophobically Modified Gelatin Films on Wet Blood Vessels. International Journal of Molecular Sciences, 2014, 15, 2142-2156.	4.1	18
52	Examination of the early wound healing process under different wound dressing conditions. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2017, 123, 310-319.	0.4	18
53	Evaluation of an octyl group-modified Alaska pollock gelatin-based surgical sealant for prevention of postoperative adhesion. Acta Biomaterialia, 2021, 121, 328-338.	8.3	18
54	Synthesis of activated poly(α,β-malic acid) using N-hydroxysuccinimide and its gelation with collagen as biomaterials. Materials Science and Engineering C, 2004, 24, 815-819.	7.3	17

#	Article	IF	CITATIONS
55	Enhanced bonding strength of a novel tissue adhesive consisting of cholesteryl group-modified gelatin and disuccinimidyl tartarate. Journal of Bioactive and Compatible Polymers, 2012, 27, 31-44.	2.1	17
56	Unusual degradation behavior of citric acid-crosslinked gelatin in vitro and in vivo. Polymer Degradation and Stability, 2010, 95, 2088-2092.	5.8	16
57	Sustainedâ€immunostimulatory nanocellulose scaffold to enhance vaccine efficacy. Journal of Biomedical Materials Research - Part A, 2020, 108, 1159-1170.	4.0	16
58	Immobilization of Human Vascular Endothelial Growth Factor (VEGF165) onto Biomaterials: An Evaluation of the Biological Activity of Immobilized VEGF165. Journal of Bioactive and Compatible Polymers, 2000, 15, 309-320.	2.1	16
59	Hydrophobically modified poly(vinyl alcohol)s as antithrombogenic coating materials. Materials Science and Engineering C, 2019, 102, 289-298.	7.3	15
60	Physicochemical properties of high-molecular-weight poly(?,?-malic acid) synthesized by direct polycondensation. Polymer Bulletin, 2003, 50, 69-75.	3.3	14
61	<i>In vivo</i> evaluation of bonding ability and biocompatibility of a novel biodegradable glue consisting of tartaric acid derivative and human serum albumin. Journal of Biomedical Materials Research - Part A, 2009, 90A, 543-548.	4.0	14
62	Spectroscopic studies on interactions between cholesterol-end capped polyethylene glycol and liposome. Colloids and Surfaces B: Biointerfaces, 2012, 97, 248-253.	5.0	14
63	Oligoethyleneimineâ€Conjugated Hyaluronic Acid Modulates Inflammatory Responses and Enhances Therapeutic Efficacy for Ulcerative Colitis. Advanced Functional Materials, 2021, 31, 2100548.	14.9	14
64	Hotmelt tissue adhesive with supramolecularly-controlled sol-gel transition for preventing postoperative abdominal adhesion. Acta Biomaterialia, 2022, 146, 80-93.	8.3	14
65	Preparation and characterization of osteochondral scaffold. Materials Science and Engineering C, 2004, 24, 881-885.	7.3	13
66	Induced albumin secretion from HepG2 spheroids prepared using poly(ethylene glycol) derivative with oleyl groups. Journal of Materials Science: Materials in Medicine, 2011, 22, 2357-2363.	3.6	13
67	Enhanced ALP activity of MG63 cells cultured on hydroxyapatite-poly(ethylene glycol) hydrogel composites prepared using EDTA-OH. Biomedical Materials (Bristol), 2015, 10, 015025.	3.3	13
68	Hemostatic, Tissue-Adhesive Colloidal Wound Dressing Functionalized by UV Irradiation. ACS Applied Bio Materials, 2020, 3, 1705-1711.	4.6	13
69	Improvement in wound healing by a novel synthetic collagen-gel dressing in genetically diabetic mice. Asian Journal of Oral and Maxillofacial Surgery, 2010, 22, 61-67.	0.1	12
70	Assembly of cells and vesicles for organ engineering. Science and Technology of Advanced Materials, 2011, 12, 064703.	6.1	12
71	Development of amphiphilic, enzymatically-degradable PEG-peptide conjugate as cell crosslinker for spheroid formation. Colloids and Surfaces B: Biointerfaces, 2013, 101, 223-227.	5.0	12
72	Crosslinking Liposomes/Cells Using Cholesteryl Group-Modified Tilapia Gelatin. International Journal of Molecular Sciences, 2014, 15, 13123-13134.	4.1	12

#	Article	IF	CITATIONS
73	Hemostatic properties of in situ gels composed of hydrophobically modified biopolymers. Journal of Biomaterials Applications, 2018, 33, 315-323.	2.4	12
74	Determination of end-group structures and by-products of synthesis of poly(α,β-malic acid) by direct polycondensation. Polymer Degradation and Stability, 2004, 84, 151-157.	5.8	11
75	In vitroevaluation of tissue adhesives composed of hydrophobically modified gelatins and disuccinimidyl tartrate. Science and Technology of Advanced Materials, 2012, 13, 064212.	6.1	11
76	Repair of rabbit segmental femoral defects by using a combination ofÂtetrapod-shaped calcium phosphate granules and basic fibroblast growth factor-binding ion complex gel. Biomaterials, 2013, 34, 9056-9062.	11.4	11
77	Quantitative biocompatibility evaluation of nickelâ€free highâ€nitrogen stainless steel in vitro/in vivo. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 68-72.	3.4	11
78	Robust closure of post-endoscopic submucosal dissection perforation by microparticle-based wound dressing. Materials Science and Engineering C, 2021, 123, 111993.	7.3	11
79	Study on the hydrolytic degradation of poly($\hat{l}\pm,\hat{l}^2$ -malic acid) by direct polycondensation. Materials Science and Engineering C, 2004, 24, 821-825.	7.3	10
80	UV irradiation enhances the bonding strength between citric acid-crosslinked gelatin and stainless steel. Colloids and Surfaces B: Biointerfaces, 2011, 88, 260-264.	5.0	10
81	Nickel-free stainless steel avoids neointima formation following coronary stent implantation. Science and Technology of Advanced Materials, 2012, 13, 064218.	6.1	10
82	Tissue-sealing and anti-adhesion properties of an in situ hydrogel of hydrophobically-modified Alaska pollock-derived gelatin. International Journal of Biological Macromolecules, 2020, 163, 2365-2373.	7.5	10
83	Polyâ€(<scp>L</scp> â€lactic acid) and citric acidâ€crosslinked gelatin composite matrices as a drugâ€eluting stent coating material with endothelialization, antithrombogenic, and drug release properties. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2049-2057.	4.0	9
84	Bonding behavior of hydrophobically modified gelatin films on the intestinal surface. Journal of Bioactive and Compatible Polymers, 2014, 29, 560-571.	2.1	9
85	Novel Alaska Pollock Gelatin Sealant Shows High Adhesive Quality and Conformability. Annals of Thoracic Surgery, 2019, 107, 1656-1662.	1.3	9
86	Prevention of postoperative adhesion with a colloidal gel based on decyl group-modified Alaska pollock gelatin microparticles. Acta Biomaterialia, 2022, 149, 139-149.	8.3	9
87	Fabrication of Polymer-Apatite Composites by Using a Novel Alternate Soaking Process Kobunshi Ronbunshu, 2000, 57, 324-335.	0.2	8
88	Unusual in vitro degradation behavior of physically cross-linked liposome gel network. Polymer Degradation and Stability, 2011, 96, 1111-1117.	5.8	8
89	Promotion of Cell Migration into a Hydrophobically modified Alaska Pollock Gelatinâ€Based Hydrogel. Macromolecular Bioscience, 2019, 19, e1900083.	4.1	8
90	Self-assembled dodecyl group-modified gelatin microparticle-based hydrogels with angiogenic properties. NPG Asia Materials, 2020, 12, .	7.9	8

#	Article	IF	CITATIONS
91	Engineering an Injectable Tough Tissue Adhesive through Nanocellulose Reinforcement. ACS Applied Bio Materials, 2020, 3, 9093-9100.	4.6	8

 $_{92}$ Injectable inclusion complex composed of \hat{l} ±-cyclodextrin and hydrophobically modified poly(vinyl) Tj ETQq0 0 0 rgBT/Overlogk 10 Tf 50

93	An Attempt to Construct the Stroma of Cornea Using Primary Cultured Corneal Cells. Journal of Nanoscience and Nanotechnology, 2007, 7, 748-751.	0.9	7
94	Binding of Lipopolysaccharide and Cholesterol-Modified Gelatin on Supported Lipid Bilayers: Effect of Bilayer Area Confinement and Bilayer Edge Tension. Langmuir, 2016, 32, 1250-1258.	3.5	7
95	Growth factorâ€free, angiogenic hydrogel based on hydrophobically modified Alaska pollock gelatin. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 2291-2299.	2.7	7
96	Injectable, Nonâ€Diffusible, and Preâ€Filled Bone Paste Composed of αâ€Tricalcium Phosphate and Hydrophobically Modified Poly(Vinyl Alcohol). Advanced Engineering Materials, 2019, 21, 1900660.	3.5	7
97	Design of bio-inspired adhesive surface composed of hexanoyl group-modified gelatin and silicon nanowire. Colloids and Surfaces B: Biointerfaces, 2019, 178, 111-119.	5.0	7
98	Anti-Inflammatory and Tissue Adhesion Properties of an α-Linolenic Acid-Modified Gelatin-Based In Situ Hydrogel. ACS Applied Bio Materials, 2020, 3, 6204-6213.	4.6	7
99	Adhesive Submucosal Injection Material Based on the Nonanal Group-Modified Poly(vinyl) Tj ETQq1 1 0.784314 Materials, 2020, 3, 4370-4379.	rgBT /Ove 4.6	rlock 10 Tf 7
100	Effectiveness and biocompatibility of a novel biological adhesive application for repair of meniscal tear on the avascular zone. Science and Technology of Advanced Materials, 2012, 13, 064219.	6.1	6
101	Preparation and biological evaluation of hydroxyapatite-coated nickel-free high-nitrogen stainless steel. Science and Technology of Advanced Materials, 2012, 13, 064213.	6.1	6
102	Induction of Intermembrane Adhesion by Incorporation of Synthetic Adhesive Molecules into Cell Membranes. Langmuir, 2015, 31, 1988-1998.	3.5	6
103	Nickel-Free High-Nitrogen Stainless Steel. Springer Series in Biomaterials Science and Engineering, 2015, , 125-156.	1.0	6
104	Enhanced skin adhesive property of α-cyclodextrin/nonanyl group-modified poly(vinyl alcohol) inclusion complex film. Carbohydrate Polymers, 2021, 263, 117993.	10.2	6
105	Bone Regeneration by the Combined Use of Tetrapod-Shaped Calcium Phosphate Granules with Basic Fibroblast Growth Factor-Binding Ion Complex Gel in Canine Segmental Radial Defects. Journal of Veterinary Medical Science, 2014, 76, 955-961.	0.9	5
106	Prevention of pulmonary air leaks using a biodegradable tissue-adhesive fiber sheet based on Alaska pollock gelatin modified with decanyl groups. Biomaterials Science, 2021, 9, 861-873.	5.4	5
107	Improved tissue adhesion property of a hydrophobically modified Alaska pollock derived gelatin sheet by UV treatment. International Journal of Biological Macromolecules, 2021, 172, 580-588.	7.5	5
108	Fabrication of reactive poly(vinyl alcohol) membranes for prevention of bone cement leakage. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1786-1791.	3.4	4

#	Article	IF	CITATIONS
109	Repair of segmental radial defects in dogs using tailor-made titanium mesh cages with plates combined with calcium phosphate granules and basic fibroblast growth factor-binding ion complex gel. Journal of Artificial Organs, 2017, 20, 91-98.	0.9	4
110	Covering Post-Endoscopic Submucosal Dissection Ulcers in Miniature Swine with Hexanoyl (Hx:C6) Group-Modified Alkaline-Treated Gelatin Porous Film (HAG) Induces Proper Healing by Decreasing Inflammation and Fibrosis. Digestion, 2021, 102, 415-427.	2.3	4
111	Efficacy of Alaska Pollock Gelatin Sealant for Pulmonary Air Leakage in Porcine Models. Annals of Thoracic Surgery, 2022, 113, 1641-1647.	1.3	4
112	Bonding a titanium plate and soft tissue interface by using an adhesive bone paste composed of α-tricalcium phosphate and α-cyclodextrin/nonanyl group-modified poly(vinyl alcohol) inclusion complex. Colloids and Surfaces B: Biointerfaces, 2021, 203, 111757.	5.0	4
113	Fish Gelatin-Based Absorbable Dural Sealant with Anti-inflammatory Properties. ACS Biomaterials Science and Engineering, 2021, 7, 4991-4998.	5.2	4
114	Novel pancreatoenteric reconstruction using a bioabsorbable polymer sheet and biocompatible bond. Journal of Surgical Research, 2013, 183, 1-7.	1.6	3
115	Prevention of catheter infection using a biodegradable tissue adhesive composed of human serum albumin and disuccinimidyl tartrate. Journal of Bioactive and Compatible Polymers, 2014, 29, 284-297.	2.1	3
116	Effects of ultraviolet irradiation on bonding strength between Co–Cr alloy and citric acid-crosslinked gelatin matrix. Journal of Biomaterials Applications, 2014, 28, 880-886.	2.4	3
117	A hydrophobic gelatin fiber sheet promotes secretion of endogenous vascular endothelial growth factor and stimulates angiogenesis. RSC Advances, 2020, 10, 24800-24807.	3.6	3
118	Development of an immunosuppressive camouflage-coating platform with nanocellulose and cell membrane vesicles. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1912-1924.	3.5	3
119	Development of Biocompatible Glues for Minimum Invasive Therapy. Key Engineering Materials, 2007, 330-332, 1339-1342.	0.4	2
120	Synthesis and Evaluation of PEG Derivatives for Crosslinking Cells. Macromolecular Symposia, 2007, 249-250, 159-161.	0.7	2
121	Comparative study of hydrophobically modified <scp>gelatinâ€based</scp> sealant with commercially available sealants. Journal of Biomedical Materials Research - Part A, 2022, 110, 909-915.	4.0	2
122	In Vitro Calcification Model (2): Apatite Formation on Segmented Polyurethane Thin Films by Using an Alternate Soaking Process: The Effect of Adsorbed Serum Proteins on Calcification. Journal of Bioactive and Compatible Polymers, 2000, 15, 230-244.	2.1	1
123	Development of a Novel Tissue Adhesive Consisting of Carboxymethylated Chitosan and Citric Acid Derivative with Active Ester Groups. Journal of the Adhesion Society of Japan, 2007, 43, 307-312.	0.0	1
124	Enhanced Neovascular Formation in a Novel Hydrogel Matrix Consisting of Citric Acid and Collagen. Annals of Vascular Diseases, 2011, 4, 196-203.	0.5	1
125	From biomedical-engineering research to clinical application and industrialization. Science and Technology of Advanced Materials, 2012, 13, 060301.	6.1	1
126	Tamibarotene-loaded citric acid-crosslinked alkali-treated collagen matrix as a coating material for a drug-eluting stent. Science and Technology of Advanced Materials, 2012, 13, 064208.	6.1	1

#	Article	IF	CITATIONS
127	Biodegradable organic acid-crosslinked alkali-treated gelatins with anti-thrombogenic and endothelialization properties. Science and Technology of Advanced Materials, 2012, 13, 064215.	6.1	1
128	An in vivo murine model for screening cranial bone regenerative materials: testing of a novel synthetic collagen gel. Journal of Materials Science: Materials in Medicine, 2014, 25, 1531-1538.	3.6	1
129	Tu1970 HIGH-ADHESION GELATIN FILMS REDUCE INFLAMMATION AND TISSUE CONTRACTION DURING GASTRIC ULCER HEALING FOLLOWING ENDOSCOPIC SUBMUCOSAL DISSECTION: A MINIATURE SWINE MODEL. Gastrointestinal Endoscopy, 2019, 89, AB636.	1.0	1
130	Evaluation of the wound healing process in rat skin using a hexanoyl groupâ€modified alkalineâ€treated gelatin porous film. Oral Science International, 2021, 18, 40-49.	0.7	1
131	A Novel Alaska Pollock Gelatin Sealant Shows Higher Bonding Strength and Nerve Regeneration Comparable to That of Fibrin Sealant in a Cadaveric Model and a Rat Model. Plastic and Reconstructive Surgery, 2021, 148, 742e-752e.	1.4	1
132	In Vitro Calcification Model—Part 1: Apatite Formation on Segmented Polyurethane Containing Silicone Using an Alternate Soaking Process. Journal of Bioactive and Compatible Polymers, 2000, 15, 72-84.	2.1	0
133	Controlling Adhesiveness of Material-tissue Interface for the Prevention of Catheter Infection. Journal of the Adhesion Society of Japan, 2011, 47, 278-282.	0.0	0
134	Formation of Hydroxyapatite on Nickel-Free High-Nitrogen Stainless Steel by Chemical Solution Deposition Method in Neutral/Alkaline Solution. Key Engineering Materials, 0, 529-530, 237-242.	0.4	0
135	Promotion of initial cell adhesion on trisuccinimidyl citrate-modified nickel-free high-nitrogen stainless steel. Journal of Materials Science: Materials in Medicine, 2013, 24, 951-958.	3.6	0
136	Architecture of Biocompatible Interface for the Prevention of Catheter Infection. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2014, 65, 247-250.	0.2	0
137	Enhanced skin adhesive property of electrospun α-cyclodextrin/nonanyl group-modified poly(vinyl) Tj ETQq1 1 0	.784314 rg	gBŢ /Overloo
138	Development of biomaterials for constructing tumor microenvironment <i>in vitro</i> models. Drug Delivery System, 2021, 36, 256-264.	0.0	0