
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8397666/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nature Chemical Biology, 2011, 7, 885-887.	3.9	2,936
2	Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nature Biotechnology, 2011, 29, 68-72.	9.4	955
3	Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nature Chemical Biology, 2016, 12, 311-316.	3.9	502
4	Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nature Chemical Biology, 2015, 11, 592-597.	3.9	428
5	Efficient and quantitative high-throughput tRNA sequencing. Nature Methods, 2015, 12, 835-837.	9.0	426
6	Epitranscriptome sequencing technologies: decoding RNA modifications. Nature Methods, 2017, 14, 23-31.	9.0	360
7	Oxidative demethylation of 3â€methylthymine and 3â€methyluracil in singleâ€stranded DNA and RNA by mouse and human FTO. FEBS Letters, 2008, 582, 3313-3319.	1.3	359
8	Base-Resolution Mapping Reveals Distinct m1A Methylome in Nuclear- and Mitochondrial-Encoded Transcripts. Molecular Cell, 2017, 68, 993-1005.e9.	4.5	344
9	Crystal structures of DNA/RNA repair enzymes AlkB and ABH2 bound to dsDNA. Nature, 2008, 452, 961-965.	13.7	230
10	Mapping recently identified nucleotide variants in the genome and transcriptome. Nature Biotechnology, 2012, 30, 1107-1116.	9.4	197
11	Landscape and Regulation of m6A and m6Am Methylome across Human and Mouse Tissues. Molecular Cell, 2020, 77, 426-440.e6.	4.5	179
12	Mapping the epigenetic modifications of DNA and RNA. Protein and Cell, 2020, 11, 792-808.	4.8	174
13	Jasmonate-Activated MYC2 Represses ETHYLENE INSENSITIVE3 Activity to Antagonize Ethylene-Promoted Apical Hook Formation in <i>Arabidopsis</i> ÂÂ. Plant Cell, 2014, 26, 1105-1117.	3.1	171
14	Protein cysteine phosphorylation of SarA/MgrA family transcriptional regulators mediates bacterial virulence and antibiotic resistance. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15461-15466.	3.3	151
15	Bisulfite-free, base-resolution analysis of 5-formylcytosine at the genome scale. Nature Methods, 2015, 12, 1047-1050.	9.0	141
16	Single-Cell 5-Formylcytosine Landscapes of Mammalian Early Embryos and ESCs at Single-Base Resolution. Cell Stem Cell, 2017, 20, 720-731.e5.	5.2	135
17	Chemical Modifications to RNA: A New Layer of Gene Expression Regulation. ACS Chemical Biology, 2017, 12, 316-325.	1.6	134
18	Analysis of RNA base modification and structural rearrangement by single-molecule real-time detection of reverse transcription. Journal of Nanobiotechnology, 2013, 11, 8.	4.2	131

#	Article	IF	CITATIONS
19	Cap-specific, terminal N6-methylation by a mammalian m6Am methyltransferase. Cell Research, 2019, 29, 80-82.	5.7	131
20	DNA Repair by Reversal of DNA Damage. Cold Spring Harbor Perspectives in Biology, 2013, 5, a012575-a012575.	2.3	121
21	Iron-catalysed oxidation intermediates captured in a DNA repair dioxygenase. Nature, 2010, 468, 330-333.	13.7	120
22	Pseudouridine: the fifth RNA nucleotide with renewed interests. Current Opinion in Chemical Biology, 2016, 33, 108-116.	2.8	120
23	Transcriptome-wide dynamics of RNA pseudouridylation. Nature Reviews Molecular Cell Biology, 2015, 16, 581-585.	16.1	107
24	A Non-Heme Iron-Mediated Chemical Demethylation in DNA and RNA. Accounts of Chemical Research, 2009, 42, 519-529.	7.6	102
25	Cellular Dynamics of RNA Modification. Accounts of Chemical Research, 2011, 44, 1380-1388.	7.6	98
26	The m6A methylome of SARS-CoV-2 in host cells. Cell Research, 2021, 31, 404-414.	5.7	95
27	N1-methyladenosineÂmethylation in tRNA drives liver tumourigenesis by regulating cholesterol metabolism. Nature Communications, 2021, 12, 6314.	5.8	81
28	Dynamics of spontaneous flipping of a mismatched base in DNA duplex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8043-8048.	3.3	79
29	N1-methyladenosine methylome in messenger RNA and non-coding RNA. Current Opinion in Chemical Biology, 2018, 45, 179-186.	2.8	72
30	Bisulfite-Free, Nanoscale Analysis of 5-Hydroxymethylcytosine at Single Base Resolution. Journal of the American Chemical Society, 2018, 140, 13190-13194.	6.6	71
31	Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation. Nature Chemical Biology, 2020, 16, 160-169.	3.9	68
32	Baseâ€Resolution Analysis of Cisplatin–DNA Adducts at the Genome Scale. Angewandte Chemie - International Edition, 2016, 55, 14246-14249.	7.2	64
33	Targeting PUS7 suppresses tRNA pseudouridylation and glioblastoma tumorigenesis. Nature Cancer, 2021, 2, 932-949.	5.7	64
34	Duplex interrogation by a direct DNA repair protein in search of base damage. Nature Structural and Molecular Biology, 2012, 19, 671-676.	3.6	62
35	Mitochondrial base editor induces substantial nuclear off-target mutations. Nature, 2022, 606, 804-811.	13.7	62
36	Increasing the efficiency and precision of prime editing with guide RNA pairs. Nature Chemical Biology, 2022, 18, 29-37.	3.9	60

#	Article	IF	CITATIONS
37	Targeting MgrA-Mediated Virulence Regulation in Staphylococcus aureus. Chemistry and Biology, 2011, 18, 1032-1041.	6.2	55
38	Switching Demethylation Activities between AlkB Family RNA/DNA Demethylases through Exchange of Activeâ€6ite Residues. Angewandte Chemie - International Edition, 2014, 53, 3659-3662.	7.2	53
39	Tautomerization-dependent recognition and excision of oxidation damage in base-excision DNA repair. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7792-7797.	3.3	50
40	Tissue-specific 5-hydroxymethylcytosine landscape of the human genome. Nature Communications, 2021, 12, 4249.	5.8	50
41	Genome-wide mapping reveals that deoxyuridine is enriched in the human centromeric DNA. Nature Chemical Biology, 2018, 14, 680-687.	3.9	45
42	Structure determination of DNA methylation lesions N 1 -meA and N 3 -meC in duplex DNA using a cross-linked protein–DNA system. Nucleic Acids Research, 2010, 38, 4415-4425.	6.5	43
43	Transposase-assisted tagmentation of RNA/DNA hybrid duplexes. ELife, 2020, 9, .	2.8	40
44	Structural insight into the oxidationâ€sensing mechanism of the antibiotic resistance of regulator MexR. EMBO Reports, 2010, 11, 685-690.	2.0	38
45	m6Am-seq reveals the dynamic m6Am methylation in the human transcriptome. Nature Communications, 2021, 12, 4778.	5.8	38
46	A Radiolabelingâ€Free, qPCRâ€Based Method for Locusâ€5pecific Pseudouridine Detection. Angewandte Chemie - International Edition, 2017, 56, 14878-14882.	7.2	36
47	Liquid biopsies: DNA methylation analyses in circulating cell-free DNA. Journal of Genetics and Genomics, 2018, 45, 185-192.	1.7	36
48	Detect-seq reveals out-of-protospacer editing and target-strand editing by cytosine base editors. Nature Methods, 2021, 18, 643-651.	9.0	36
49	Decoding pseudouridine: an emerging target for therapeutic development. Trends in Pharmacological Sciences, 2022, 43, 522-535.	4.0	32
50	Epitranscriptomics: Toward A Better Understanding of RNA Modifications. Genomics, Proteomics and Bioinformatics, 2017, 15, 147-153.	3.0	31
51	Direct decarboxylation of ten-eleven translocation-produced 5-carboxylcytosine in mammalian genomes forms a new mechanism for active DNA demethylation. Chemical Science, 2021, 12, 11322-11329.	3.7	29
52	Genome-wide Mapping of Cellular Protein–RNA Interactions Enabled by Chemical Crosslinking. Genomics, Proteomics and Bioinformatics, 2014, 12, 72-78.	3.0	28
53	N6-methyladenosine regulates maternal RNA maintenance in oocytes and timely RNA decay during mouse maternal-to-zygotic transition. Nature Cell Biology, 2022, 24, 917-927.	4.6	28
54	Deciphering TAL effectors for 5-methylcytosine and 5-hydroxymethylcytosine recognition. Nature Communications, 2017, 8, 901.	5.8	26

#	Article	IF	CITATIONS
55	Biochemical and Structural Insights into the Mechanism of DNA Recognition by Arabidopsis ETHYLENE INSENSITIVE3. PLoS ONE, 2015, 10, e0137439.	1.1	24
56	Rationalization and prediction of selective decoding of pseudouridine-modified nonsense and sense codons. Rna, 2012, 18, 355-367.	1.6	23
57	Allosteric histidine switch for regulation of intracellular zinc(II) fluctuation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13661-13666.	3.3	22
58	Transformation of 5-Carboxylcytosine to Cytosine Through C–C Bond Cleavage in Human Cells Constitutes a Novel Pathway for DNA Demethylation. CCS Chemistry, 2021, 3, 994-1008.	4.6	21
59	Advances in single-cell multi-omics profiling. RSC Chemical Biology, 2021, 2, 441-449.	2.0	20
60	Perspectives on topology of the human m ¹ A methylome at single nucleotide resolution. Rna, 2018, 24, 1437-1442.	1.6	19
61	Reading Chemical Modifications in the Transcriptome. Journal of Molecular Biology, 2020, 432, 1824-1839.	2.0	18
62	The m ⁶ A Consensus Motif Provides a Paradigm of Epitranscriptomic Studies. Biochemistry, 2021, 60, 3410-3412.	1.2	16
63	m6Am methyltransferase PCIF1 is essential for aggressiveness of gastric cancer cells by inhibiting TM9SF1 mRNA translation. Cell Discovery, 2022, 8, .	3.1	16
64	Baseâ€Resolution Analysis of Cisplatin–DNA Adducts at the Genome Scale. Angewandte Chemie, 2016, 128, 14458-14461.	1.6	14
65	The epitranscriptome of small non-coding RNAs. Non-coding RNA Research, 2021, 6, 167-173.	2.4	13
66	Epitranscriptomic technologies and analyses. Science China Life Sciences, 2020, 63, 501-515.	2.3	12
67	Integrated characterization of SARS-CoV-2 genome, microbiome, antibiotic resistance and host response from single throat swabs. Cell Discovery, 2021, 7, 19.	3.1	11
68	Transcriptome-Wide Mapping of N 1-Methyladenosine Methylome. Methods in Molecular Biology, 2017, 1562, 245-255.	0.4	10
69	Single-base resolution analysis of DNA epigenome via high-throughput sequencing. Science China Life Sciences, 2016, 59, 219-226.	2.3	9
70	Compilation of Modern Technologies To Map Genomeâ€Wide Cytosine Modifications in DNA. ChemBioChem, 2019, 20, 1898-1905.	1.3	9
71	Oxidative Demethylation of DNA and RNA Mediated by Nonâ€Heme Ironâ€Dependent Dioxygenases. Chemistry - an Asian Journal, 2014, 9, 2018-2029.	1.7	8
72	Unnatural Cytosine Bases Recognized as Thymines by DNA Polymerases by the Formation of the Watson–Crick Geometry. Angewandte Chemie - International Edition, 2019, 58, 130-133.	7.2	8

#	Article	IF	CITATIONS
73	DNA repair glycosylase hNEIL1 triages damaged bases via competing interaction modes. Nature Communications, 2021, 12, 4108.	5.8	8
74	Structural Insights into the Specific Recognition of 5-methylcytosine and 5-hydroxymethylcytosine by TAL Effectors. Journal of Molecular Biology, 2020, 432, 1035-1047.	2.0	6
75	m6Am RNA modification detection by m6Am-seq. Methods, 2022, 203, 242-248.	1.9	6
76	Pseudouridine Chemical Labeling and Profiling. Methods in Enzymology, 2015, 560, 247-272.	0.4	5
77	AlkB recognition of a bulky DNA base adduct stabilized by chemical cross-linking. Science China Chemistry, 2010, 53, 86-90.	4.2	4
78	Advances in the Profiling of Single ell DNA Modifications. Small Methods, 2019, 3, 1900137.	4.6	4
79	Metatranscriptomic analysis of host response and vaginal microbiome of patients with severe COVID-19. Science China Life Sciences, 2022, , 1.	2.3	4
80	Coupling Transcription and Translation via the Epitranscriptomic m6A Mark. Biochemistry, 2019, 58, 297-298.	1.2	3
81	Single-Cell 5fC Sequencing. Methods in Molecular Biology, 2019, 1979, 251-267.	0.4	2
82	Acetylation Enhances mRNA Stability and Translation. Biochemistry, 2019, 58, 1553-1554.	1.2	2
83	Structural insight into the oxidationâ€sensing mechanism of the antibiotic resistance of regulator MexR. EMBO Reports, 2010, 11, 717-717.	2.0	1
84	Probing enzyme-mediated oxidation reactions in crystallo. Pure and Applied Chemistry, 2011, 83, 2199-2212.	0.9	1
85	A Radiolabelingâ€Free, qPCRâ€Based Method for Locusâ€Specific Pseudouridine Detection. Angewandte Chemie, 2017, 129, 15074-15078.	1.6	1
86	Unnatural Cytosine Bases Recognized as Thymines by DNA Polymerases by the Formation of the Watson–Crick Geometry. Angewandte Chemie, 2019, 131, 136-139.	1.6	1
87	A Novel Epigenetic Mark Derived from Vitamin C. Biochemistry, 2020, 59, 8-9.	1.2	1
88	Characterization of m ⁶ A modifications in the contemporary Zika virus genome and host cellular transcripts. Journal of Medical Virology, 2022, 94, 4309-4318.	2.5	1
89	Mixed methods. PLoS Genetics, 2020, 16, e1008950.	1.5	0