
Grégorio Crini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8397519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sorption of 4-n-nonylphenol, 4-n-octylphenol, and 4-tert-octyphenol on cyclodextrin polymers. Environmental Science and Pollution Research, 2022, 29, 171-181.	2.7	9
2	Cyclodextrin applications in pharmacy, biology, medicine, and environment. Environmental Science and Pollution Research, 2022, 29, 167-170.	2.7	0
3	Bio-waste valorisation: Agricultural wastes as biosorbents for removal of (in)organic pollutants in wastewater treatment. Chemical Engineering Journal Advances, 2022, 9, 100239.	2.4	109
4	Removal of emerging contaminants from wastewater using advanced treatments. A review. Environmental Chemistry Letters, 2022, 20, 1333-1375.	8.3	124
5	Use of chènevotte, a valuable co-product of industrial hemp fiber, as adsorbent for copper ions: Kinetic studies and modeling. Arabian Journal of Chemistry, 2022, 15, 103742.	2.3	7
6	Hemp-Based Materials for Applications in Wastewater Treatment by Biosorption-Oriented Processes: A Review. , 2022, , 239-295.		2
7	Professor Casu's contribution to cyclodextrins, the remarkable cage-shaped molecules: a review. Environmental Chemistry Letters, 2022, 20, 2085-2095.	8.3	1
8	Methods for selenium removal from contaminated waters: a review. Environmental Chemistry Letters, 2022, 20, 2019-2041.	8.3	14
9	Innovative technologies to remove alkylphenols from wastewater: a review. Environmental Chemistry Letters, 2022, 20, 2597-2628.	8.3	10
10	Revealing the adsorption mechanism of copper on hemp-based materials through EDX, nano-CT, XPS, FTIR, Raman, and XANES characterization techniques. Chemical Engineering Journal Advances, 2022, 10, 100282.	2.4	17
11	Worldwide cases of water pollution by emerging contaminants: a review. Environmental Chemistry Letters, 2022, 20, 2311-2338.	8.3	117
12	The period of doubt: 1950–1970. , 2022, , 111-124.		0
13	Exploration: 1930–1950. , 2022, , 91-110.		0
14	Discovery: 1799–1894. , 2022, , 15-56.		0
15	The period of application: From 1970 until now. , 2022, , 125-148.		0
16	Chitin and chitosan: Production, properties, and applications. , 2022, , 149-207.		8
17	A period of confusion and controversy: 1894–1930. , 2022, , 57-90.		0

2

#	Article	lF	CITATIONS
19	Emerging Contaminants: Analysis, Aquatic Compartments and Water Pollution. Environmental Chemistry for A Sustainable World, 2021, , 1-111.	0.3	3
20	Remediation of Emerging Contaminants. Environmental Chemistry for A Sustainable World, 2021, , 1-106.	0.3	5
21	Outstanding contribution of Professor József Szejtli to cyclodextrin applications in foods, cosmetics, drugs, chromatography and biotechnology: a review. Environmental Chemistry Letters, 2021, 19, 2619-2641.	8.3	11
22	The contribution of professor Paul Karrer (1889–1971) to dextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2021, 99, 155-167.	0.9	2
23	Simultaneous Removal of Inorganic and Organic Pollutants from Polycontaminated Wastewaters on Modified Hemp-Based Felts. Revista De Chimie (discontinued), 2021, 72, 25-43.	0.2	7
24	Cyclodextrin–epichlorohydrin polymers synthesis, characterization and applications to wastewater treatment: a review. Environmental Chemistry Letters, 2021, 19, 2383-2403.	8.3	29
25	Contributions of Dexter French (1918–1981) to cycloamylose/cyclodextrin and starch science. Carbohydrate Polymers, 2021, 257, 117620.	5.1	16
26	Adsorption of a triazole antifungal agent, difenoconazole, on soils from a cereal farm: Protective effect of hemp felt. Environmental Technology and Innovation, 2021, 22, 101394.	3.0	11
27	Biosorbents from Plant Fibers of Hemp and Flax for Metal Removal: Comparison of Their Biosorption Properties. Molecules, 2021, 26, 4199.	1.7	17
28	Use of Chènevotte, a Valuable Co-Product of Industrial Hemp Fiber, as Adsorbent for Pollutant Removal. Part I: Chemical, Microscopic, Spectroscopic and Thermogravimetric Characterization of Raw and Modified Samples. Molecules, 2021, 26, 4574.	1.7	13
29	130 years of cyclodextrin discovery for health, food, agriculture, and the industry: a review. Environmental Chemistry Letters, 2021, 19, 2581-2617.	8.3	102
30	Technologies to Remove Selenium from Water and Wastewater. Environmental Chemistry for A Sustainable World, 2021, , 207-304.	0.3	11
31	Advanced Treatments for the Removal of Alkylphenols and Alkylphenol Polyethoxylates from Wastewater. Environmental Chemistry for A Sustainable World, 2021, , 305-398.	0.3	3
32	Emergence of a Pathogenic Fungus Resistant to Triazole Antifungal Drugs. Environmental Chemistry for A Sustainable World, 2021, , 165-206.	0.3	0
33	Simultaneous removal of Cd, Co, Cu, Mn, Ni, and Zn from synthetic solutions on a hempâ€based felt. III. Real discharge waters. Journal of Applied Polymer Science, 2020, 137, 48823.	1.3	8
34	Water-Insoluble Cyclodextrin-Epichlorohydrin Polymers. Environmental Chemistry for A Sustainable World, 2020, , 345-394.	0.3	0
35	Removal of Mercury Ions from Aqueous Solutions by Crosslinked Chitosanâ€based Adsorbents: A Mini Review. Chemical Record, 2020, 20, 1220-1234.	2.9	23
36	Applications of hemp in textiles, paper industry, insulation and building materials, horticulture, animal nutrition, food and beverages, nutraceuticals, cosmetics and hygiene, medicine, agrochemistry, energy production and environment: a review. Environmental Chemistry Letters, 2020, 18, 1451-1476.	8.3	184

#	Article	IF	CITATIONS
37	The contribution of Franz Schardinger to cyclodextrins: a tribute on the occasion of the centenary of his death. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2020, 97, 19-28.	0.9	10
38	Environment-Friendly Approach toward the Treatment of Raw Agricultural Wastewater and River Water via Flocculation Using Chitosan and Bean Straw Flour as Bioflocculants. ACS Omega, 2020, 5, 3943-3951.	1.6	40
39	History of Cyclodextrins. Environmental Chemistry for A Sustainable World, 2020, , 1-93.	0.3	10
40	Professor József Szejtli: The Godfather of Cyclodextrins. Environmental Chemistry for A Sustainable World, 2020, , 95-155.	0.3	1
41	Twenty years of dextrin research: a tribute to Professor Hans Pringsheim (1876–1940). Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2020, 98, 11-27.	0.9	3
42	Traditional and New Applications of Hemp. Sustainable Agriculture Reviews, 2020, , 37-87.	0.6	12
43	Professor Casu and Cyclodextrins. Environmental Chemistry for A Sustainable World, 2020, , 157-179.	0.3	0
44	Conventional and non-conventional adsorbents for wastewater treatment. Environmental Chemistry Letters, 2019, 17, 195-213.	8.3	611
45	Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 2019, 17, 145-155.	8.3	1,575
46	Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environmental Chemistry Letters, 2019, 17, 1667-1692.	8.3	401
47	Chitosan for direct bioflocculation of wastewater. Environmental Chemistry Letters, 2019, 17, 1603-1621.	8.3	90
48	Historical review on chitin and chitosan biopolymers. Environmental Chemistry Letters, 2019, 17, 1623-1643.	8.3	160
49	Dye removal by biosorption using cross-linked chitosan-based hydrogels. Environmental Chemistry Letters, 2019, 17, 1645-1666.	8.3	94
50	Hemp to limit diffusion of difenoconazole in vegetable garden soils. Heliyon, 2019, 5, e02392.	1.4	7
51	Fundamentals and Applications of Chitosan. Sustainable Agriculture Reviews, 2019, , 49-123.	0.6	60
52	Cross-Linked Chitosan-Based Hydrogels for Dye Removal. Sustainable Agriculture Reviews, 2019, , 381-425.	0.6	12
53	Chitosan for Direct Bioflocculation Processes. Sustainable Agriculture Reviews, 2019, , 335-380.	0.6	7
54	Historical Landmarks in the Discovery of Chitin. Sustainable Agriculture Reviews, 2019, , 1-47.	0.6	11

#	Article	IF	CITATIONS
55	Hemp-based adsorbents for sequestration of metals: a review. Environmental Chemistry Letters, 2019, 17, 393-408.	8.3	57
56	Synthesis of silica materials containing cyclodextrin and their applications in wastewater treatment. Environmental Chemistry Letters, 2019, 17, 683-696.	8.3	49
57	Monitoring and Origin of Polycyclic Aromatic Hydrocarbons (PAHs) in Effluents from a Surface Treatment Industry. Polycyclic Aromatic Compounds, 2019, 39, 452-461.	1.4	3
58	Fundamentals and Applications of Cyclodextrins. Environmental Chemistry for A Sustainable World, 2018, , 1-55.	0.3	22
59	Metals in aqueous solutions and real effluents: biosorption behavior of a hempâ€based felt. Journal of Chemical Technology and Biotechnology, 2018, 93, 2592-2601.	1.6	23
60	Water-insoluble β-cyclodextrin–epichlorohydrin polymers for removal of pollutants from aqueous solutions by sorption processes using batch studies: A review of inclusion mechanisms. Progress in Polymer Science, 2018, 78, 1-23.	11.8	193
61	Polymer-enhanced ultrafiltration for heavy metal removal: Influence of chitosan and carboxymethyl cellulose on filtration performances. Journal of Cleaner Production, 2018, 171, 927-933.	4.6	119
62	Analysis of Triazole Fungicides in Aqueous Solutions and Their Removal on Modified Activated Carbons. Arabian Journal for Science and Engineering, 2018, 43, 3493-3501.	1.7	5
63	Determination of azole fungal residues in soils and detection of Aspergillus fumigatus-resistant strains in market gardens of Eastern France. Environmental Science and Pollution Research, 2018, 25, 32015-32023.	2.7	22
64	Wastewater Treatment: An Overview. Environmental Chemistry for A Sustainable World, 2018, , 1-21.	0.3	32
65	Adsorption-Oriented Processes Using Conventional and Non-conventional Adsorbents for Wastewater Treatment. Environmental Chemistry for A Sustainable World, 2018, , 23-71.	0.3	83
66	Silica Materials Containing Cyclodextrin for Pollutant Removal. Environmental Chemistry for A Sustainable World, 2018, , 149-182.	0.3	2
67	Hemp-Based Materials for Metal Removal. Environmental Chemistry for A Sustainable World, 2018, , 1-34.	0.3	6
68	Cyclodextrins, from molecules to applications. Environmental Chemistry Letters, 2018, 16, 1361-1375.	8.3	189
69	Desulfurization: Critical step towards enhanced selenium removal from industrial effluents. Chemosphere, 2017, 172, 111-119.	4.2	42
70	Treated wastewater phytotoxicity assessment using LactucaÂsativa : Focus on germination and root elongation test parameters. Comptes Rendus - Biologies, 2017, 340, 188-194.	0.1	99
71	Simultaneous removal of Cd, Co, Cu, Mn, Ni, and Zn from synthetic solutions on a hempâ€based felt. II. Chemical modification. Journal of Applied Polymer Science, 2017, 134, 45138.	1.3	23
72	Remediation of Solutions Containing Oxyanions of Selenium by Ultrafiltration: Study of Rejection Performances with and without Chitosan Addition. Industrial & Engineering Chemistry Research, 2017, 56, 10461-10471.	1.8	16

#	Article	IF	CITATIONS
73	Simultaneous removal of five triazole fungicides from synthetic solutions on activated carbons and cyclodextrin-based adsorbents. Heliyon, 2017, 3, e00380.	1.4	20
74	In Memoriam Benito Casu (1927–2016). Carbohydrate Research, 2017, 448, 227-228.	1.1	2
75	Simultaneous removal of Cd, Co, Cu, Mn, Ni and Zn from synthetic solutions on a hempâ€based felt: Experimental design. Journal of Applied Polymer Science, 2017, 134, .	1.3	9
76	Metal removal from aqueous media by polymer-assisted ultrafiltration with chitosan. Arabian Journal of Chemistry, 2017, 10, S3826-S3839.	2.3	86
77	Alkylphenol and alkylphenol polyethoxylates in water and wastewater: A review of options for their elimination. Arabian Journal of Chemistry, 2017, 10, S3749-S3773.	2.3	141
78	HEMP DECONTAMINATION OF POLY-METALLIC AQUEOUS SOLUTIONS. Environmental Engineering and Management Journal, 2017, 16, 535-542.	0.2	13
79	Chapitre XI. Du chanvre pour dépolluer des eaux polycontaminées en métaux. , 2017, , 323-340.		5
80	Pollutant removal from industrial discharge water using individual and combined effects of adsorption and ion-exchange processes: Chemical abatement. Journal of Saudi Chemical Society, 2016, 20, 185-194.	2.4	63
81	Cross-linked cyclodextrin-based material for treatment of metals and organic substances present in industrial discharge waters. Beilstein Journal of Organic Chemistry, 2016, 12, 1826-1838.	1.3	38
82	Chemical and Ecotoxicological Monitoring of Discharge Water from a Metal-Finishing Factory. Environmental Processes, 2016, 3, 59-72.	1.7	12
83	DISCHARGE WATERS: DETERMINATION OF POLYCYCLIC AROMATIC HYDROCARBON (PAH) LEVELS BY A GC-MS/MS METHOD. Environmental Engineering and Management Journal, 2015, 14, 1195-1202.	0.2	7
84	Optimisation of an industrial wastewater decontamination plant: An environmentâ€oriented approach. Canadian Journal of Chemical Engineering, 2014, 92, 391-400.	0.9	2
85	Unexpected toxic interactions in the freshwater amphipod Gammarus pulex (L.) exposed to binary copper and nickel mixtures. Environmental Science and Pollution Research, 2014, 21, 1099-1111.	2.7	23
86	Monitoring metal ions present in the effluent discharged from a surface treatment plant: Analytical results. Comptes Rendus Chimie, 2014, 17, 1197-1202.	0.2	8
87	Review: A History of Cyclodextrins. Chemical Reviews, 2014, 114, 10940-10975.	23.0	1,373
88	Decontamination of polluted discharge waters from surface treatment industries by pressure-driven membranes: Removal performances and environmental impact. Chemical Engineering Journal, 2014, 258, 309-319.	6.6	32
89	Advanced oxidation (UV-ozone) and cyclodextrin sorption: Effects of individual and combined action on the chemical abatement of organic pollutants in industrial effluents. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 603-608.	2.7	22
90	Environmental applications of water-insoluble β-cyclodextrin–epichlorohydrin polymers. Progress in Polymer Science, 2013, 38, 344-368.	11.8	384

#	Article	IF	CITATIONS
91	Analytical Monitoring of the Chemicals Present in the Discharge Water Generated by the Surface Treatment Industry. Journal of Environmental Protection, 2013, 04, 53-60.	0.3	11
92	Evaluation of the phytotoxicity of polycontaminated industrial effluents using the lettuce plant (Lactuca sativa) as a bioindicator. Ecotoxicology and Environmental Safety, 2011, 74, 2057-2064.	2.9	88
93	Sorption onto crosslinked cyclodextrin polymers for industrial pollutants removal: an interesting environmental approach. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 70, 315-320.	1.6	32
94	Heavy metal removal from industrial effluents by sorption on cross-linked starch: Chemical study and impact on water toxicity. Journal of Environmental Management, 2011, 92, 765-772.	3.8	56
95	Starch-based biosorbents for dyes in textile wastewater treatment. International Journal of Environmental Technology and Management, 2010, 12, 129.	0.1	22
96	High sensitivity of Gammarus sp. juveniles to deltamethrin: Outcomes for risk assessment. Ecotoxicology and Environmental Safety, 2010, 73, 1402-1407.	2.9	40
97	Chitosan flocculation of cardboard-mill secondary biological wastewater. Chemical Engineering Journal, 2009, 155, 775-783.	6.6	112
98	Mixture toxicity assessment of wood preservative pesticides in the freshwater amphipod Gammarus pulex (L.). Ecotoxicology and Environmental Safety, 2009, 72, 441-449.	2.9	70
99	Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science, 2008, 33, 399-447.	11.8	1,862
100	The removal of Basic Blue 3 from aqueous solutions by chitosan-based adsorbent: Batch studies. Journal of Hazardous Materials, 2008, 153, 96-106.	6.5	176
101	Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: Error analysis. Journal of Hazardous Materials, 2008, 157, 34-46.	6.5	377
102	Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dyes and Pigments, 2008, 77, 415-426.	2.0	362
103	Cationized starch-based material as a new ion-exchanger adsorbent for the removal of C.I. Acid Blue 25 from aqueous solutions. Bioresource Technology, 2008, 99, 7573-7586.	4.8	130
104	Adsorption of C.I. Basic Blue 9 on chitosan-based materials. International Journal of Environment and Pollution, 2008, 34, 451.	0.2	30
105	Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies. Separation and Purification Technology, 2007, 53, 97-110.	3.9	841
106	Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 2006, 97, 1061-1085.	4.8	3,556
107	Removal of organic pollutants from aqueous solutions by adsorbents prepared from an agroalimentary by-product. Bioresource Technology, 2006, 97, 2173-2181.	4.8	75
108	Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science, 2005, 30, 38-70.	11.8	1,812

#	Article	IF	CITATIONS
109	Studies on adsorption of propiconazole on modified carbons. Separation and Purification Technology, 2005, 46, 11-18.	3.9	18
110	Preparation, characterization and sorption properties of crosslinked starch-based exchangers. Carbohydrate Polymers, 2005, 60, 67-75.	5.1	81
111	Characterization of crosslinked starch materials with spectroscopic techniques. Journal of Applied Polymer Science, 2004, 93, 2650-2663.	1.3	68
112	New Tetrapyrazolic Macrocycle. Synthesis and Preliminary Use in Metal Ion Extraction ChemInform, 2004, 35, no.	0.1	0
113	New tetrapyrazolic macrocycle. Synthesis and preliminary use in metal ion extraction. Tetrahedron, 2004, 60, 939-942.	1.0	36
114	Immobilization of pyrazole compounds on silica gels and their preliminary use in metal ion extraction. New Journal of Chemistry, 2003, 27, 1224.	1.4	38
115	Studies on adsorption of dyes on beta-cyclodextrin polymer. Bioresource Technology, 2003, 90, 193-198.	4.8	245
116	Starch-modified filters used for the removal of dyes from waste water. Macromolecular Symposia, 2003, 203, 165-172.	0.4	45
117	Synthesis and applications of adsorbents containing cyclodextrins. Journal of Separation Science, 2002, 25, 789-813.	1.3	309
118	Grafting of cyclodextrins onto polypropylene nonwoven fabrics for the manufacture of reactive filters. III. Study of the sorption properties. Journal of Applied Polymer Science, 2002, 85, 1771-1778.	1.3	36
119	Novel crosslinked gels with starch derivatives. Polymer-water interactions. Applications in waste water treatment Macromolecular Symposia, 2001, 166, 103-108.	0.4	17
120	Preparation and sorption properties of a ?-cyclodextrin-linked chitosan derivative. Journal of Polymer Science Part A, 2001, 39, 169-176.	2.5	86
121	Grafting of cyclodextrins onto polypropylene nonwoven fabrics for the manufacture of reactive filters. I. Synthesis parameters. Journal of Applied Polymer Science, 2000, 77, 2118-2125.	1.3	61
122	Grafting of cyclodextrins onto polypropylene nonwoven fabrics for the manufacture of reactive filters. II. Characterization. Journal of Applied Polymer Science, 2000, 78, 2166-2173.	1.3	25
123	Preparation of pyrazole compounds for attachment to chelating resins. European Polymer Journal, 2000, 36, 1885-1892.	2.6	38
124	Allylamine–β-cyclodextrin copolymer. Journal of Chromatography A, 2000, 894, 95-103.	1.8	10
125	New sorbents containing beta-cyclodextrin. Synthesis, characterization, and sorption properties. Reactive and Functional Polymers, 1999, 42, 173-180.	2.0	59
126	Poly(vinylamine)-coated capillaries with reversed electroosmotic flow for the separation of organic anions. Journal of Chromatography A, 1999, 836, 81-91.	1.8	16

#	Article	IF	CITATIONS
127	Sorption properties toward substituted phenolic derivatives in water using macroporous polyamines containing ?-cyclodextrin. Journal of Applied Polymer Science, 1999, 73, 2903-2910.	1.3	33
128	Vinylpyrrolidine-β-cyclodextrin copolymer: A novel chiral selector for capillary electrophoresis. Electrophoresis, 1999, 20, 2614-2618.	1.3	22
129	Solid state NMR spectroscopy study of molecular motion in cyclomaltoheptaose (β-cyclodextrin) crosslinked with epichlorohydrin1Paper presented at the IXth European Carbohydrate Symposium, Utrecht, The Netherlands, 6–11 July 1997; abstr. E-27, p. 465.1. Carbohydrate Research, 1998, 308, 37-45.	1.1	90
130	Macroporous polyamines containing cyclodextrin: Synthesis, characterization, and sorption properties. Journal of Applied Polymer Science, 1998, 69, 1419-1427.	1.3	30
131	NMR characterization of N-benzyl sulfonated derivatives of chitosan. Carbohydrate Polymers, 1997, 33, 145-151.	5.1	33
132	La bioadsorption sur amidon réticulé pour enlever des métaux des effluents industriels. Revue Des Sciences De L'Eau, 0, 23, 275-287.	0.2	6
133	Suivi et optimisation d'une station de décontamination des eaux usées de la filière traitement de surface : abattement chimique et impact écotoxicologique. Revue Des Sciences De L'Eau, 0, 24, 329-341.	0.2	2