
Charles H F Peden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/839732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Remarkable self-degradation of Cu/SAPO-34 selective catalytic reduction catalysts during storage at ambient conditions. Catalysis Today, 2021, 360, 367-374.	4.4	18
2	Revisiting effects of alkali metal and alkaline earth co-cation additives to Cu/SSZ-13 selective catalytic reduction catalysts. Journal of Catalysis, 2019, 378, 363-375.	6.2	59
3	Using Transient FTIR Spectroscopy to Probe Active Sites and Reaction Intermediates for Selective Catalytic Reduction of NO on Cu/SSZ-13 Catalysts. ACS Catalysis, 2019, 9, 6137-6145.	11.2	105
4	Cu/Chabazite catalysts for â€~Lean-Burn' vehicle emission control. Journal of Catalysis, 2019, 373, 384-389.	6.2	40
5	Structural Intergrowth in δ-Al ₂ O ₃ . Journal of Physical Chemistry C, 2019, 123, 9454-9460.	3.1	14
6	Unraveling the mysterious failure of Cu/SAPO-34 selective catalytic reduction catalysts. Nature Communications, 2019, 10, 1137.	12.8	99
7	NH3-SCR on Cu, Fe and Cu + Fe exchanged beta and SSZ-13 catalysts: Hydrothermal aging and propylene poisoning effects. Catalysis Today, 2019, 320, 91-99.	4.4	90
8	Formation of NO+ and its possible roles during the selective catalytic reduction of NOx with NH3 on Cu-CHA catalysts. Catalysis Today, 2019, 320, 61-71.	4.4	32
9	Where Does the Sulphur Go? Deactivation of a Low Temperature CO Oxidation Catalyst by Sulphur Poisoning. Catalysis Letters, 2018, 148, 1445-1450.	2.6	3
10	Improved thermal stability of a copper-containing ceria-based catalyst for low temperature CO oxidation under simulated diesel exhaust conditions. Catalysis Science and Technology, 2018, 8, 1383-1394.	4.1	20
11	Catalytic N2O decomposition and reduction by NH3 over Fe/Beta and Fe/SSZ-13 catalysts. Journal of Catalysis, 2018, 358, 199-210.	6.2	80
12	Recent Progress in Atomic-Level Understanding of Cu/SSZ-13 Selective Catalytic Reduction Catalysts. Catalysts, 2018, 8, 140.	3.5	91
13	Ambient-temperature NO oxidation over amorphous CrOx-ZrO2 mixed oxide catalysts: Significant promoting effect of ZrO2. Applied Catalysis B: Environmental, 2017, 202, 706-714.	20.2	60
14	Transformation of Active Sites in Fe/SSZ-13 SCR Catalysts during Hydrothermal Aging: A Spectroscopic, Microscopic, and Kinetics Study. ACS Catalysis, 2017, 7, 2458-2470.	11.2	89
15	Ambient temperature NO oxidation over Cr-based amorphous mixed oxide catalysts: effects from the second oxide components. Catalysis Science and Technology, 2017, 7, 2362-2370.	4.1	27
16	Selective Catalytic Reduction over Cu/SSZ-13: Linking Homo- and Heterogeneous Catalysis. Journal of the American Chemical Society, 2017, 139, 4935-4942.	13.7	380
17	New insights into Cu/SSZ-13 SCR catalyst acidity. Part I: Nature of acidic sites probed by NH3 titration. Journal of Catalysis, 2017, 348, 291-299.	6.2	233
18	Toward Rational Design of Cu/SSZ-13 Selective Catalytic Reduction Catalysts: Implications from Atomic-Level Understanding of Hydrothermal Stability. ACS Catalysis, 2017, 7, 8214-8227.	11.2	278

#	Article	IF	CITATIONS
19	Sub-micron Cu/SSZ-13: Synthesis and application as selective catalytic reduction (SCR) catalysts. Applied Catalysis B: Environmental, 2017, 201, 461-469.	20.2	101
20	Iron Loading Effects in Fe/SSZ-13 NH ₃ -SCR Catalysts: Nature of the Fe Ions and Structure–Function Relationships. ACS Catalysis, 2016, 6, 2939-2954.	11.2	126
21	Virtual Special Issue on Catalysis at the U.S. Department of Energy's National Laboratories. ACS Catalysis, 2016, 6, 3227-3235.	11.2	2
22	Hydrothermal Aging Effects on Fe/SSZ-13 and Fe/Beta NH3–SCR Catalysts. Topics in Catalysis, 2016, 59, 882-886.	2.8	26
23	Characterization of Fe ²⁺ ions in Fe,H/SSZ-13 zeolites: FTIR spectroscopy of CO and NO probe molecules. Physical Chemistry Chemical Physics, 2016, 18, 10473-10485.	2.8	25
24	High field 27Al MAS NMR and TPD studies of active sites in ethanol dehydration using thermally treated transitional aluminas as catalysts. Journal of Catalysis, 2016, 336, 85-93.	6.2	47
25	NO oxidation on zeolite supported Cu catalysts: Formation and reactivity of surface nitrates. Catalysis Today, 2016, 267, 17-27.	4.4	39
26	Modification of the acid/base properties of γ-Al2O3 by oxide additives: An ethanol TPD investigation. Catalysis Today, 2016, 265, 240-244.	4.4	16
27	Performance and properties of K and TiO2 based LNT catalysts. Applied Catalysis B: Environmental, 2016, 181, 862-873.	20.2	7
28	Surface-Bound Intermediates in Low-Temperature Methanol Synthesis on Copper: Participants and Spectators. ACS Catalysis, 2015, 5, 7328-7337.	11.2	77
29	A comparative kinetics study between Cu/SSZ-13 and Fe/SSZ-13 SCR catalysts. Catalysis Today, 2015, 258, 347-358.	4.4	94
30	A comparative study of N2O formation during the selective catalytic reduction of NOx with NH3 on zeolite supported Cu catalysts. Journal of Catalysis, 2015, 329, 490-498.	6.2	115
31	Advantages of MgAlO _{<i>x</i>} over γ-Al ₂ O ₃ as a Support Material for Potassium-Based High-Temperature Lean NO _{<i>x</i>} Traps. ACS Catalysis, 2015, 5, 4680-4689.	11.2	15
32	Effect of Oxygen Defects on the Catalytic Performance of VO _{<i>x</i>} /CeO ₂ Catalysts for Oxidative Dehydrogenation of Methanol. ACS Catalysis, 2015, 5, 3006-3012.	11.2	96
33	Unraveling the Origin of Structural Disorder in High Temperature Transition Al ₂ O ₃ : Structure of Î,-Al ₂ O ₃ . Chemistry of Materials, 2015, 27, 7042-7049.	6.7	51
34	Effects of Alkali and Alkaline Earth Cocations on the Activity and Hydrothermal Stability of Cu/SSZ-13 NH ₃ –SCR Catalysts. ACS Catalysis, 2015, 5, 6780-6791.	11.2	235
35	Effects of Si/Al ratio on Cu/SSZ-13 NH3-SCR catalysts: Implications for the active Cu species and the roles of BrÄ,nsted acidity. Journal of Catalysis, 2015, 331, 25-38.	6.2	341
36	Investigation of Aluminum Site Changes of Dehydrated Zeolite H-Beta during a Rehydration Process by High-Field Solid-State NMR. Journal of Physical Chemistry C, 2015, 119, 1410-1417.	3.1	63

#	Article	IF	CITATIONS
37	Synthesis and evaluation of Cu/SAPO-34 catalysts for NH3-SCR 2: Solid-state ion exchange and one-pot synthesis. Applied Catalysis B: Environmental, 2015, 162, 501-514.	20.2	166
38	Fe/SSZ-13 as an NH3-SCR catalyst: A reaction kinetics and FTIR/Mössbauer spectroscopic study. Applied Catalysis B: Environmental, 2015, 164, 407-419.	20.2	108
39	Following the movement of Cu ions in a SSZ-13 zeolite during dehydration, reduction and adsorption: A combined in situ TP-XRD, XANES/DRIFTS study. Journal of Catalysis, 2014, 314, 83-93.	6.2	131
40	Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ over a Cuâ€SSZâ€13 Catalyst Prepared by a Solidâ€State Ionâ€Exchange Method. ChemCatChem, 2014, 6, 1579-1583.	3.7	101
41	Effects of CeO2 support facets on VOx/CeO2 catalysts in oxidative dehydrogenation of methanol. Journal of Catalysis, 2014, 315, 15-24.	6.2	66
42	Understanding ammonia selective catalytic reduction kinetics over Cu/SSZ-13 from motion of the Cu ions. Journal of Catalysis, 2014, 319, 1-14.	6.2	307
43	Structure of δ-Alumina: Toward the Atomic Level Understanding of Transition Alumina Phases. Journal of Physical Chemistry C, 2014, 118, 18051-18058.	3.1	72
44	Effect of H ₂ O on the Morphological Changes of KNO ₃ Formed on K ₂ O/Al ₂ O ₃ NO _{<i>x</i>} Storage Materials: Fourier Transform Infrared and Time-Resolved X-ray Diffraction Studies. Journal of Physical Chemistry C, 2014, 118, 4189-4197.	3.1	14
45	A General Mechanism for Stabilizing the Small Sizes of Precious Metal Nanoparticles on Oxide Supports. Chemistry of Materials, 2014, 26, 5475-5481.	6.7	53
46	Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nature Communications, 2014, 5, 4885.	12.8	498
47	NO Chemisorption on Cu/SSZ-13: A Comparative Study from Infrared Spectroscopy and DFT Calculations. ACS Catalysis, 2014, 4, 4093-4105.	11.2	139
48	Effects of potassium loading and thermal aging on K/Pt/Al2O3 high-temperature lean NOx trap catalysts. Catalysis Today, 2014, 231, 164-172.	4.4	21
49	In situ DRIFTS-MS studies on the oxidation of adsorbed NH3 by NO over a Cu-SSZ-13 zeolite. Catalysis Today, 2013, 205, 16-23.	4.4	158
50	Synthesis and Evaluation of Cu-SAPO-34 Catalysts for Ammonia Selective Catalytic Reduction. 1. Aqueous Solution Ion Exchange. ACS Catalysis, 2013, 3, 2083-2093.	11.2	168
51	Effect of K loadings on nitrate formation/decomposition and on NOx storage performance of K-based NOx storage-reduction catalysts. Applied Catalysis B: Environmental, 2013, 142-143, 472-478.	20.2	21
52	Stable platinum nanoparticles on specific MgAl2O4 spinel facets at high temperatures in oxidizing atmospheres. Nature Communications, 2013, 4, 2481.	12.8	166
53	Characterization of Cu-SSZ-13 NH3 SCR catalysts: an in situ FTIR study. Physical Chemistry Chemical Physics, 2013, 15, 2368.	2.8	142
54	Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO ₂ Fixation. Chemical Reviews, 2013, 113, 6621-6658.	47.7	1,786

#	Article	IF	CITATIONS
55	Structure–activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies. Journal of Catalysis, 2013, 300, 20-29.	6.2	409
56	Cation Movements during Dehydration and NO ₂ Desorption in a Ba–Y,FAU Zeolite: An in Situ Time-Resolved X-ray Diffraction Study. Journal of Physical Chemistry C, 2013, 117, 3915-3922.	3.1	36
57	Tomography and High-Resolution Electron Microscopy Study of Surfaces and Porosity in a Plate-like γ-Al ₂ O ₃ . Journal of Physical Chemistry C, 2013, 117, 179-186.	3.1	81
58	Current Understanding of Cu-Exchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNOx Catalysts. Topics in Catalysis, 2013, 56, 1441-1459.	2.8	297
59	Effect of Sodium on the Catalytic Properties of VO _{<i>x</i>} /CeO ₂ Catalysts for Oxidative Dehydrogenation of Methanol. Journal of Physical Chemistry C, 2013, 117, 5722-5729.	3.1	25
60	A Common Intermediate for N ₂ Formation in Enzymes and Zeolites: Sideâ€On Cu–Nitrosyl Complexes. Angewandte Chemie - International Edition, 2013, 52, 9985-9989.	13.8	94
61	Effect of sulfur loading on the desulfation chemistry of a commercial lean NOx trap catalyst. Catalysis Today, 2012, 197, 3-8.	4.4	11
62	A large sample volume magic angle spinning nuclear magnetic resonance probe for in situ investigations with constant flow of reactants. Physical Chemistry Chemical Physics, 2012, 14, 2137-2143.	2.8	20
63	Highly Dispersed and Active ReO _{<i>x</i>} on Alumina-Modified SBA-15 Silica for 2-Butanol Dehydration. ACS Catalysis, 2012, 2, 1020-1026.	11.2	22
64	Size-Dependent Catalytic Performance of CuO on γ-Al ₂ O ₃ : NO Reduction versus NH ₃ Oxidation. ACS Catalysis, 2012, 2, 1432-1440.	11.2	75
65	Two different cationic positions in Cu-SSZ-13?. Chemical Communications, 2012, 48, 4758.	4.1	350
66	Well-studied Cu–BTC still serves surprises: evidence for facile Cu2+/Cu+ interchange. Physical Chemistry Chemical Physics, 2012, 14, 4383.	2.8	91
67	The Effect of Copper Loading on the Selective Catalytic Reduction of Nitric Oxide by Ammonia Over Cu-SSZ-13. Catalysis Letters, 2012, 142, 295-301.	2.6	186
68	Enhanced High Temperature Performance of MgAl2O4-Supported Pt–BaO Lean NOx Trap Catalysts. Topics in Catalysis, 2012, 55, 70-77.	2.8	12
69	Synthesis of butenes through 2-butanol dehydration over mesoporous materials produced from ferrierite. Catalysis Today, 2012, 185, 191-197.	4.4	25
70	Thermal durability of Cu-CHA NH3-SCR catalysts for diesel NO reduction. Catalysis Today, 2012, 184, 252-261.	4.4	245
71	Possible origin of improved high temperature performance of hydrothermally aged Cu/beta zeolite catalysts. Catalysis Today, 2012, 184, 245-251.	4.4	35
72	Deactivation mechanisms of Pt/Pd-based diesel oxidation catalysts. Catalysis Today, 2012, 184, 197-204.	4.4	86

#	Article	IF	CITATIONS
73	Characteristics of Pt–K/MgAl2O4 lean NOx trap catalysts. Catalysis Today, 2012, 184, 2-7.	4.4	27
74	Isothermal desulfation of pre-sulfated Pt-BaO/Ĵ³-Al2O3 lean NOx trap catalysts with H2: The effect of H2 concentration and the roles of CO2 and H2O. Applied Catalysis B: Environmental, 2012, 111-112, 342-348.	20.2	11
75	Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites. Journal of Catalysis, 2012, 287, 203-209.	6.2	438
76	Using a Surface-Sensitive Chemical Probe and a Bulk Structure Technique to Monitor the γ- to Î,-Al ₂ O ₃ Phase Transformation. Journal of Physical Chemistry C, 2011, 115, 12575-12579.	3.1	37
77	Characterizing Surface Acidic Sites in Mesoporous-Silica-Supported Tungsten Oxide Catalysts Using Solid-State NMR and Quantum Chemistry Calculations. Journal of Physical Chemistry C, 2011, 115, 23354-23362.	3.1	11
78	Solvent Evaporation Assisted Preparation of Oriented Nanocrystalline Mesoporous MFI Zeolites. ACS Catalysis, 2011, 1, 682-690.	11.2	67
79	Direct Conversion of Bio-ethanol to Isobutene on Nanosized Zn _{<i>x</i>} Zr _{<i>y</i>} O _{<i>z</i>X} Mixed Oxides with Balanced Acid–Base Sites. Journal of the American Chemical Society, 2011, 133, 11096-11099.	13.7	225
80	Insight into methanol synthesis from CO2 hydrogenation on Cu(111): Complex reaction network and the effects of H2O. Journal of Catalysis, 2011, 281, 199-211.	6.2	347
81	Effect of reductive treatments on Pt behavior and NOx storage in lean NOx trap catalysts. Catalysis Today, 2011, 175, 78-82.	4.4	4
82	Regeneration of field-spent activated carbon catalysts for low-temperature selective catalytic reduction of NOx with NH3. Chemical Engineering Journal, 2011, 174, 242-248.	12.7	25
83	The Origin of Regioselectivity in 2â€Butanol Dehydration on Solid Acid Catalysts. ChemCatChem, 2011, 3, 1557-1561.	3.7	30
84	(100) facets of γ-Al2O3: The Active Surfaces for Alcohol Dehydration Reactions. Catalysis Letters, 2011, 141, 649-655.	2.6	105
85	Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. Journal of Catalysis, 2010, 275, 187-190.	6.2	674
86	Catalyst size and morphological effects on the interaction of NO2 with BaO/ \hat{I}^3 -Al2O3 materials. Catalysis Today, 2010, 151, 304-313.	4.4	8
87	The different impacts of SO2 and SO3 on Cu/zeolite SCR catalysts. Catalysis Today, 2010, 151, 266-270.	4.4	96
88	Unique Role of Anchoring Penta-Coordinated Al ³⁺ Sites in the Sintering of γ-Al ₂ O ₃ -Supported Pt Catalysts. Journal of Physical Chemistry Letters, 2010, 1, 2688-2691.	4.6	101
89	Effect of Produced HCl during the Catalysis on Micro- and Mesoporous MOFs. Crystal Growth and Design, 2010, 10, 4118-4122.	3.0	15
90	Micro and mesoporous metal–organic frameworks for catalysis applications. Dalton Transactions, 2010, 39, 1692-1694.	3.3	71

#	Article	IF	CITATIONS
91	Coordinatively Unsaturated Al ³⁺ Centers as Binding Sites for Active Catalyst Phases of Platinum on γ-Al ₂ O ₃ . Science, 2009, 325, 1670-1673.	12.6	790
92	Understanding the nature of surface nitrates in BaO/ \hat{I}^3 -Al2O3 NOx storage materials: A combined experimental and theoretical study. Journal of Catalysis, 2009, 261, 17-22.	6.2	79
93	Promotional Effect of CO2 on Desulfation Processes for Pre-Sulfated Pt-BaO/Al2O3 Lean NOx Trap Catalysts. Topics in Catalysis, 2009, 52, 1719-1722.	2.8	3
94	An isotropic chemical shift–chemical shift anisotropic correlation experiment using discrete magic angle turning. Journal of Magnetic Resonance, 2009, 198, 105-110.	2.1	2
95	Effects of Sulfation Level on the Desulfation Behavior of Presulfated Pt-BaO/Al ₂ O ₃ Lean NO <i>_x</i> Trap Catalysts: A Combined H ₂ Temperature-Programmed Reaction, in Situ Sulfur K-Edge X-ray Absorption Near-Edge Spectroscopy, X-ray Photoelectron Spectroscopy, and Time-Resolved X-ray Diffraction Study. Journal	3.1	17
96	Characterization of Dispersed Heteropoly Acid on Mesoporous Zeolite Using Solid-State ³¹ P NMR Spinâ^Lattice Relaxation. Journal of the American Chemical Society, 2009, 131, 9715-9721.	13.7	42
97	Characteristics of Desulfation Behavior for Presulfated Pt-BaO/CeO2 Lean NOx Trap Catalyst: The Role of the CeO2 Support. Journal of Physical Chemistry C, 2009, 113, 21123-21129.	3.1	14
98	Studies of the Active Sites for Methane Dehydroaromatization Using Ultrahigh-Field Solid-State 95Mo NMR Spectroscopy. Journal of Physical Chemistry C, 2009, 113, 2936-2942.	3.1	29
99	First-Principles Analysis of NO _{<i>x</i>} Adsorption on Anhydrous γ-Al ₂ O ₃ Surfaces. Journal of Physical Chemistry C, 2009, 113, 7779-7789.	3.1	28
100	Characterization of surface and bulk nitrates of γ-Al2O3–supported alkaline earth oxides using density functional theory. Physical Chemistry Chemical Physics, 2009, 11, 3380.	2.8	10
101	Promotional Effects of H2O Treatment on NO x Storage Over Fresh and Thermally Aged Pt–BaO/Al2O3 Lean NO x Trap Catalysts. Catalysis Letters, 2008, 124, 39-45.	2.6	13
102	Effects of Novel Supports on the Physical and Catalytic Properties of Tungstophosphoric Acid for Alcohol Dehydration Reactions. Topics in Catalysis, 2008, 49, 259-267.	2.8	24
103	Sequential high temperature reduction, low temperature hydrolysis for the regeneration of sulfated NOx trap catalysts. Catalysis Today, 2008, 136, 183-187.	4.4	10
104	NOx uptake on alkaline earth oxides (BaO, MgO, CaO and SrO) supported on Î ³ -Al2O3. Catalysis Today, 2008, 136, 121-127.	4.4	27
105	NMR studies of Cu/zeolite SCR catalysts hydrothermally aged with urea. Catalysis Today, 2008, 136, 34-39.	4.4	35
106	Title is missing!. Catalysis Today, 2008, 136, 1-2.	4.4	4
107	Excellent sulfur resistance of Pt/BaO/CeO2 lean NOx trap catalysts. Applied Catalysis B: Environmental, 2008, 84, 545-551.	20.2	55
108	Role of Pentacoordinated Al ³⁺ lons in the High Temperature Phase Transformation of γ-Al ₂ O ₃ . Journal of Physical Chemistry C, 2008, 112, 9486-9492.	3.1	106

#	Article	IF	CITATIONS
109	Carbonate Formation and Stability on a Pt/BaO/γ-Al2O3 NOX Storage/Reduction Catalyst. Journal of Physical Chemistry C, 2008, 112, 10952-10959.	3.1	47
110	Roles of Pt and BaO in the Sulfation of Pt/BaO/Al ₂ O ₃ Lean NO <i>_x</i> Trap Materials:  Sulfur K-edge XANES and Pt L _{III} XAFS Studies. Journal of Physical Chemistry C, 2008, 112, 2981-2987.	3.1	17
111	Adsorption and Formation of BaO Overlayers on γ-Al ₂ O ₃ Surfaces. Journal of Physical Chemistry C, 2008, 112, 18050-18060.	3.1	29
112	Direct Observation of the Active Center for Methane Dehydroaromatization Using an Ultrahigh Field ⁹⁵ Mo NMR Spectroscopy. Journal of the American Chemical Society, 2008, 130, 3722-3723.	13.7	134
113	Grafting sulfated zirconia on mesoporous silica. Green Chemistry, 2007, 9, 540.	9.0	23
114	Effect of H2O on the Adsorption of NO2on γ-Al2O3:  an in Situ FTIR/MS Study. Journal of Physical Chemistry C, 2007, 111, 2661-2669.	3.1	97
115	Water-induced morphology changes in BaO/Î ³ -Al2O3NOxstorage materials. Chemical Communications, 2007, , 984-986.	4.1	13
116	Understanding Practical Catalysts Using a Surface Science Approach:  The Importance of Strong Interaction between BaO and Al ₂ O ₃ in NO <i>_x</i> Storage Materials. Journal of Physical Chemistry C, 2007, 111, 14942-14944.	3.1	32
117	Design of a Reaction Protocol for Decoupling Sulfur Removal and Thermal Aging Effects during Desulfation of Ptâ °BaO/Al2O3 Lean NOx Trap Catalysts. Industrial & Engineering Chemistry Research, 2007, 46, 2735-2740.	3.7	11
118	Water-Induced Morphology Changes in BaO/γ-Al2O3NOxStorage Materials:  an FTIR, TPD, and Time-Resolved Synchrotron XRD Study. Journal of Physical Chemistry C, 2007, 111, 4678-4687.	3.1	35
119	Oxidation of ethanol to acetaldehyde over Na-promoted vanadium oxide catalysts. Applied Catalysis A: General, 2007, 332, 263-272.	4.3	36
120	Penta-coordinated Al3+ ions as preferential nucleation sites for BaO on γ-Al2O3: An ultra-high-magnetic field 27Al MAS NMR study. Journal of Catalysis, 2007, 251, 189-194.	6.2	173
121	Water-induced bulk Ba(NO3)2 formation from NO2 exposed thermally aged BaO/Al2O3. Applied Catalysis B: Environmental, 2007, 72, 233-239.	20.2	39
122	Ba Deposition and Oxidation on Î,-Al2O3/NiAl(100) Ultrathin Films. Part I:  Anaerobic Deposition Conditions. Journal of Physical Chemistry B, 2006, 110, 17001-17008.	2.6	27
123	Low Temperature H2O and NO2 Coadsorption on Î,-Al2O3/NiAl(100) Ultrathin Films. Journal of Physical Chemistry B, 2006, 110, 8025-8034.	2.6	27
124	Ba Deposition and Oxidation on Î,-Al2O3/NiAl(100) Ultrathin Films. Part II:  O2(g) Assisted Ba Oxidation. Journal of Physical Chemistry B, 2006, 110, 17009-17014.	2.6	27
125	Effect of Barium Loading on the Desulfation of Pt-BaO/Al2O3Studied by H2TPRX, TEM, Sulfur K-edge XANES, and in Situ TR-XRD. Journal of Physical Chemistry B, 2006, 110, 10441-10448.	2.6	30
126	Relationship of Pt Particle Size to the NOxStorage Performance of Thermally Aged Pt/BaO/Al2O3Lean NOxTrap Catalysts. Industrial & Engineering Chemistry Research, 2006, 45, 8815-8821.	3.7	51

#	Article	IF	CITATIONS
127	Fractional Factorial Study of HCN Removal over a 0.5% Pt/Al2O3 Catalyst:  Effects of Temperature, Gas Flow Rate, and Reactant Partial Pressure. Industrial & Engineering Chemistry Research, 2006, 45, 934-939.	3.7	19
128	Characterization of NOx species in dehydrated and hydrated Na- and Ba-Y, FAU zeolites formed in NO2 adsorption. Journal of Electron Spectroscopy and Related Phenomena, 2006, 150, 164-170.	1.7	19
129	Effects of Ba loading and calcination temperature on BaAl2O4 formation for BaO/Al2O3 NOx storage and reduction catalysts. Catalysis Today, 2006, 114, 86-93.	4.4	70
130	Synthesis of nanodispersed oxides of vanadium, titanium, molybdenum, and tungsten on mesoporous silica using atomic layer deposition. Topics in Catalysis, 2006, 39, 245-255.	2.8	43
131	Non-thermal Plasma-assisted NOx Reduction over Na-Y Zeolites: The Promotional Effect of Acid Sites. Catalysis Letters, 2006, 109, 1-6.	2.6	19
132	NO x uptake mechanism on Pt/BaO/Al2O3 catalysts. Catalysis Letters, 2006, 111, 119-126.	2.6	46
133	Synthesis, characterization, and catalytic function of novel highly dispersed tungsten oxide catalysts on mesoporous silica. Journal of Catalysis, 2006, 239, 200-211.	6.2	130
134	Catalytic oxidation of HCN over a 0.5% Pt/Al2O3 catalyst. Applied Catalysis B: Environmental, 2006, 65, 282-290.	20.2	61
135	Line narrowing in 1H MAS spectrum of mesoporous silica by removing adsorbed H2O using N2. Solid State Nuclear Magnetic Resonance, 2005, 27, 200-205.	2.3	32
136	Differential kinetic analysis of diesel particulate matter (soot) oxidation by oxygen using a step–response technique. Applied Catalysis B: Environmental, 2005, 61, 120-129.	20.2	119
137	Changes in Ba Phases in BaO/Al2O3 upon Thermal Aging and H2O Treatment. Catalysis Letters, 2005, 105, 259-268.	2.6	43
138	Changing Morphology of BaO/Al2O3during NO2Uptake and Release. Journal of Physical Chemistry B, 2005, 109, 7339-7344.	2.6	79
139	Interaction of Water with Ordered Î,-Al2O3Ultrathin Films Grown on NiAl(100). Journal of Physical Chemistry B, 2005, 109, 3431-3436.	2.6	35
140	NO2Adsorption on BaO/Al2O3:Â The Nature of Nitrate Species. Journal of Physical Chemistry B, 2005, 109, 27-29.	2.6	117
141	NO2Adsorption on Ultrathin Î-Al2O3Films:Â Formation of Nitrite and Nitrate Species. Journal of Physical Chemistry B, 2005, 109, 15977-15984.	2.6	60
142	CHEMISTRY: Oxygen Vacancies and Catalysis on Ceria Surfaces. Science, 2005, 309, 713-714.	12.6	1,103
143	The Catalytic Chemistry of HCN + NO2over Naâ^' and Baâ^'Y,FAU:Â An in Situ FTIR and TPD/TPR Study. Journal of Physical Chemistry B, 2005, 109, 1481-1490.	2.6	9
144	Non-thermal plasma-assisted NOx reduction over alkali and alkaline earth ion exchanged Y, FAU zeolites. Catalysis Today, 2004, 89, 135-141.	4.4	41

#	Article	IF	CITATIONS
145	The Effect of Water on the Adsorption of NO2in Naâ^' and Baâ^'Y, FAU Zeolites:Â A Combined FTIR and TPD Investigation. Journal of Physical Chemistry B, 2004, 108, 3746-3753.	2.6	64
146	Adsorption, Coadsorption, and Reaction of Acetaldehyde and NO2on Naâ^'Y,FAU:Â An In Situ FTIR Investigation. Journal of Physical Chemistry B, 2004, 108, 17050-17058.	2.6	18
147	Adsorption and Reaction of SO2on Model Ce1Â-ÂxZrxO2(111) Catalysts. Journal of Physical Chemistry B, 2004, 108, 2931-2938.	2.6	39
148	Nonthermal plasma-assisted catalytic NOx reduction over Ba-Y,FAU: the effect of catalyst preparation. Journal of Catalysis, 2003, 220, 291-298.	6.2	36
149	Conversion of N2O to N2 on TiO2(1 1 0). Catalysis Today, 2003, 85, 251-266.	4.4	30
150	Insights into Photoexcited Electron Scavenging Processes on TiO2Obtained from Studies of the Reaction of O2with OH Groups Adsorbed at Electronic Defects on TiO2(110). Journal of Physical Chemistry B, 2003, 107, 534-545.	2.6	413
151	The adsorption of NO2and the NO + O2reaction on Na-Y,FAU: an in situ FTIR investigation. Physical Chemistry Chemical Physics, 2003, 5, 4045-4051.	2.8	68
152	Electronic and Chemical Properties of Ce0.8Zr0.2O2(111) Surfaces:Â Photoemission, XANES, Density-Functional, and NO2Adsorption Studies. Journal of Physical Chemistry B, 2001, 105, 7762-7770.	2.6	118
153	Preparation of Highly Dispersed Cs-Tungstophosphoric Acid Salt on MCM-41 Silica. Catalysis Letters, 2001, 75, 169-173.	2.6	12
154	Cs-substituted tungstophosphoric acid salt supported on mesoporous silica. Catalysis Today, 2000, 55, 117-124.	4.4	96
155	Interaction of Molecular Oxygen with the Vacuum-Annealed TiO2(110) Surface:Â Molecular and Dissociative Channels. Journal of Physical Chemistry B, 1999, 103, 5328-5337.	2.6	473
156	Evidence for oxygen adatoms on TiO2(110) resulting from O2 dissociation at vacancy sites. Surface Science, 1998, 412-413, 333-343.	1.9	273
157	Comment on ?Structure sensitivity in CO oxidation over rhodium? by M. Bowker, Q. Guo, Y. Li and R. W. Joyner. Catalysis Letters, 1993, 22, 271-274.	2.6	13
158	In-situ FT-IRAS study of the CO oxidation reaction over Ru(001): III. Observation of a 2140 cmâ^'1 C-O stretching vibration. Catalysis Letters, 1991, 10, 91-101.	2.6	9
159	Kinetics of carbon monoxide oxidation on single-crystal palladium, platinum, and iridium. The Journal of Physical Chemistry, 1988, 92, 5213-5221.	2.9	325
160	Kinetics of hydrogen absorption by Pd(110). Physical Review B, 1986, 34, 817-822.	3.2	108