List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8397124/publications.pdf Version: 2024-02-01

Μλελμιρο Ικέρλ

#	Article	IF	CITATIONS
1	Disruption of Aquaporin-11 Produces Polycystic Kidneys following Vacuolization of the Proximal Tubule. Molecular and Cellular Biology, 2005, 25, 7770-7779.	2.3	231
2	A Golgi-associated PDZ Domain Protein Modulates Cystic Fibrosis Transmembrane Regulator Plasma Membrane Expression. Journal of Biological Chemistry, 2002, 277, 3520-3529.	3.4	214
3	Characterization of Aquaporin-6 as a Nitrate Channel in Mammalian Cells. Journal of Biological Chemistry, 2002, 277, 39873-39879.	3.4	188
4	Pharmacology of CS-866, a novel nonpeptide angiotensin II receptor antagonist. European Journal of Pharmacology, 1995, 285, 181-188.	3.5	144
5	Decreased abundance of urinary exosomal aquaporin-1 in renal ischemia-reperfusion injury. American Journal of Physiology - Renal Physiology, 2009, 297, F1006-F1016.	2.7	128
6	Identification and characterization of two isoforms of an endothelin-converting enzyme-1. FEBS Letters, 1995, 371, 140-144.	2.8	113
7	Glutamate mediates platelet activation through the AMPA receptor. Journal of Experimental Medicine, 2008, 205, 575-584.	8.5	95
8	The NPC Motif of Aquaporin-11, Unlike the NPA Motif of Known Aquaporins, Is Essential for Full Expression of Molecular Function. Journal of Biological Chemistry, 2011, 286, 3342-3350.	3.4	75
9	miRNA profiling of urinary exosomes to assess the progression of acute kidney injury. Scientific Reports, 2019, 9, 4692.	3.3	63
10	Pravastatin improves renal ischemia–reperfusion injury by inhibiting the mevalonate pathway. Kidney International, 2008, 74, 577-584.	5.2	54
11	Determinants of AQP6 trafficking to intracellular sites versus the plasma membrane in transfected mammalian cells. Biology of the Cell, 2006, 98, 101-109.	2.0	53
12	Palytoxin induces a nonselective cation channel in single ventricular cells of rat. Naunyn-Schmiedeberg's Archives of Pharmacology, 1988, 337, 591-3.	3.0	52
13	Characterization of urinary exosomal release of aquaporin-1 and -2 after renal ischemia-reperfusion in rats. American Journal of Physiology - Renal Physiology, 2018, 314, F584-F601.	2.7	52
14	A protective role of unfolded protein response in mouse ischemic acute kidney injury. European Journal of Pharmacology, 2008, 592, 138-145.	3.5	51
15	Therapeutic effects of the putative P2X3/P2X2/3 antagonist A-317491 on cyclophosphamide-induced cystitis in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 377, 483-490.	3.0	45
16	Ischemic acute tubular necrosis models and drug discovery: a focus on cellular inflammation. Drug Discovery Today, 2006, 11, 364-370.	6.4	44
17	Aquaporin 11 insufficiency modulates kidney susceptibility to oxidative stress. American Journal of Physiology - Renal Physiology, 2013, 304, F1295-F1307.	2.7	42
18	Urinary excretion pattern of exosomal aquaporin-2 in rats that received gentamicin. American Journal of Physiology - Renal Physiology, 2014, 307, F1227-F1237.	2.7	40

#	Article	IF	CITATIONS
19	Cell Ca2+ response to luminal vasopressin in cortical collecting tubule principal cells. Kidney International, 1994, 45, 811-816.	5.2	38
20	Shiga toxin activates p38 MAP kinase through cellular Ca2+increase in Vero cells. FEBS Letters, 2000, 485, 94-98.	2.8	36
21	The Protective Effect of a Newly Developed Molecular Chaperone–Inducer Against Mouse Ischemic Acute Kidney Injury. Journal of Pharmacological Sciences, 2009, 109, 311-314.	2.5	36
22	Regulation of cortical collecting duct function: Effect of endothelin. American Heart Journal, 1993, 125, 582-588.	2.7	34
23	Excretion of urinary exosomal AQP2 in rats is regulated by vasopressin and urinary pH. American Journal of Physiology - Renal Physiology, 2013, 305, F1412-F1421.	2.7	33
24	The Cytoplasmic Tail of Large Conductance, Voltage- and Ca2+-activated K+ (MaxiK) Channel Is Necessary for Its Cell Surface Expression. Journal of Biological Chemistry, 2003, 278, 2713-2722.	3.4	30
25	Aquaporins in Urinary Extracellular Vesicles (Exosomes). International Journal of Molecular Sciences, 2016, 17, 957.	4.1	29
26	A Regulatory Role of Polycystin-1 on Cystic Fibrosis Transmembrane Conductance Regulator Plasma Membrane Expression. Cellular Physiology and Biochemistry, 2006, 18, 9-20.	1.6	26
27	Regulation of Aquaporins by Vasopressin in the Kidney. Vitamins and Hormones, 2015, 98, 307-337.	1.7	24
28	Platelet Dysfunction in Chediak-Higashi Syndrome-Affected Cattle Journal of Veterinary Medical Science, 2002, 64, 751-760.	0.9	22
29	Do polycystins function as cation channels?. Current Opinion in Nephrology and Hypertension, 2002, 11, 539-545.	2.0	21
30	An Early Decrease in Release of Aquaporin-2 in Urinary Extracellular Vesicles After Cisplatin Treatment in Rats. Cells, 2019, 8, 139.	4.1	21
31	Urinary extracellular vesicular release of aquaporins in patients with renal transplantation. BMC Nephrology, 2019, 20, 216.	1.8	20
32	Spironolactone, but not Eplerenone, Impairs Glucose Tolerance in a Rat Model of Metabolic Syndrome. Journal of Veterinary Medical Science, 2012, 74, 1015-1022.	0.9	17
33	The role of Cysteine 227 in subcellular localization, water permeability, and multimerization of aquaporinâ€11. FEBS Open Bio, 2014, 4, 315-320.	2.3	17
34	Effects of Angiotensin AT1 Receptor Antagonist on Volume Overload-Induced Cardiac Gene Expression in Rats Hypertension Research, 1997, 20, 133-142.	2.7	17
35	Effect of Glucagon and Cyclic Adenosine 3′,5′-Monophosphate on Protein Phosphorylation in Rat Pancreatic Islets*. Endocrinology, 1983, 112, 348-352.	2.8	16
36	Evaluation of Olmesartan Medoxomil in the Rat Monocrotaline Model of Pulmonary Hypertension. Journal of Cardiovascular Pharmacology, 2008, 51, 18-23.	1.9	16

#	Article	IF	CITATIONS
37	Activation of renal angiotensin type 1 receptor contributes to the pathogenesis of progressive renal injury in a rat model of chronic cardiorenal syndrome. American Journal of Physiology - Renal Physiology, 2012, 302, F750-F761.	2.7	16
38	α-Lipoic acid suppresses migration and invasion via downregulation of cell surface β1-integrin expression in bladder cancer cells. Journal of Clinical Biochemistry and Nutrition, 2014, 54, 18-25.	1.4	15
39	The Protective Effect of Radicicol Against Renal Ischemia–Reperfusion Injury in Mice. Journal of Pharmacological Sciences, 2010, 112, 242-246.	2.5	14
40	Acetazolamide enhances the release of urinary exosomal aquaporin-1. Nephrology Dialysis Transplantation, 2016, 31, 1623-1632.	0.7	14
41	Amelioration of Renal Ischemia–Reperfusion Injury by Inhibition of IL-6 Production in the Poloxamer 407–Induced Mouse Model of Hyperlipidemia. Journal of Pharmacological Sciences, 2009, 110, 47-54.	2.5	13
42	Onion (Allium cepa L)-Derived Nanoparticles Inhibited LPS-Induced Nitrate Production, However, Their Intracellular Incorporation by Endocytosis Was Not Involved in This Effect on RAW264 Cells. Molecules, 2021, 26, 2763.	3.8	13
43	Involvement of the NADPH oxidase 2 pathway in renal oxidative stress in Aqp11-/- mice. Biochemistry and Biophysics Reports, 2019, 17, 169-176.	1.3	12
44	Characteristics of palytoxin-induced cation currents and Ca2+ mobilization in smooth muscle cells of rabbit portal vein. Naunyn-Schmiedeberg's Archives of Pharmacology, 1996, 355, 103-110.	3.0	11
45	Characterization of functional P2X1 receptors in mouse megakaryocytes. Thrombosis Research, 2007, 119, 343-353.	1.7	11
46	Reduced urinary release of AQP1―and AQP2â€bearing extracellular vesicles in patients with advanced chronic kidney disease. Physiological Reports, 2021, 9, e15005.	1.7	11
47	Inhibitory effect of pentalenolactone on vascular smooth muscle cell proliferation. European Journal of Pharmacology, 2001, 411, 45-53.	3.5	10
48	Decreased Excretion of Urinary Exosomal Aquaporin-2 in a Puromycin Aminonucleoside-Induced Nephrotic Syndrome Model. International Journal of Molecular Sciences, 2020, 21, 4288.	4.1	10
49	Inhibition of protein kinase C-mediated contraction by Rho kinase inhibitor fasudil in rabbit aorta. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 370, 414-422.	3.0	9
50	Characterization of a Palytoxin-Induced Non-selective Cation Channel in Mouse Megakaryocytes. The Japanese Journal of Pharmacology, 1999, 81, 200-208.	1.2	7
51	Alteration of release and role of adenosine diphosphate and thromboxane A2during collagen-induced aggregation of platelets from cattle with Chediak-Higashi syndrome. American Journal of Veterinary Research, 2007, 68, 1399-1406.	0.6	7
52	Properties of palytoxin-induced whole cell current in single rat ventricular myocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 1991, 344, 247-251.	3.0	6
53	Inhibitory effects of ruthenium red on inositol 1,4,5-trisphosphate-induced responses in rat megakaryocytes. Biochemical Pharmacology, 2001, 61, 7-13.	4.4	6
54	Ca2+ spike initiation from sensitized inositol 1,4,5-trisphosphate-sensitive Ca2+ stores in megakaryocytes. Pflugers Archiv European Journal of Physiology, 1994, 427, 355-364.	2.8	5

#	Article	IF	CITATIONS
55	Characterization of a Palytoxin-Induced Non-selective Cation Channel in Mouse Megakaryocytes. The Japanese Journal of Pharmacology, 1999, 81, 200-208.	1.2	4
56	A Defect in Collagen Receptor-Ca2+ Signaling System in Platelets from Cattle with Chediak-Higashi Syndrome. Thrombosis and Haemostasis, 2002, 87, 334-341.	3.4	4
57	Inhibitory effect of tyrphostin 47 on Shiga toxin-induced cell death. European Journal of Pharmacology, 2006, 546, 36-39.	3.5	4
58	A New Method for Rapid Detection of the Mutant Allele for Chediak-Higashi Syndrome in Japanese Black Cattle. Journal of Veterinary Medical Science, 2013, 75, 1237-1239.	0.9	4
59	A bellâ€shaped pattern of urinary aquaporinâ€2â€bearing extracellular vesicle release in an experimental model of nephronophthisis. Physiological Reports, 2019, 7, e14092.	1.7	4
60	Release of urinary aquaporin-2-bearing extracellular vesicles is decreased in pregnant Japanese Black cattle. Journal of Veterinary Medical Science, 2019, 81, 1609-1615.	0.9	3
61	Arterial blood gas anomaly in canine hepatobiliary disease. Journal of Veterinary Medical Science, 2015, 77, 1633-1638.	0.9	2
62	Importance of mechanical damage to urinary red blood cells by the glomerular basement membrane. Pediatrics International, 1994, 36, 656-657.	0.5	1
63	Upregulation of NADPH Oxidase 2 Contributes to Renal Fibrosis in <i>pcy</i> Mice: An Experimental Model of Nephronophthisis. Nephron, 2022, 146, 393-403.	1.8	1
64	Rhabdomyolysis, myoglobinuric nephrosis, and crystalline nephropathy in a captive bottlenose dolphin. Journal of Veterinary Diagnostic Investigation, 2022, 34, 668-673.	1.1	1
65	Endothelium inhibits the palytoxin-induced depolarization and Ca2+ mobilization in porcine coronary artery through endothelium-derived hyperpolarizing factor and nitric oxide released by palytoxin. Life Sciences, 1997, 60, PL91-PL97.	4.3	0
66	Glutamate mediates platelet activation through the AMPA receptor. Journal of Cell Biology, 2008, 180, i13-i13.	5.2	0
67	Urinary Exosomes as a Possible Source of Kidney Disease Biomarkers. , 2021, , 221-244.		0