Deirdre A Collins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/839707/publications.pdf

Version: 2024-02-01

430754 454834 36 930 18 30 citations h-index g-index papers 37 37 37 1068 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genetically related <i>Clostridium difficile</i> from water sources and human <scp>CDI</scp> cases revealed by wholeâ€genome sequencing. Environmental Microbiology, 2022, 24, 1221-1230.	1.8	7
2	Linkage study of surveillance and hospital admission data to investigate Clostridium difficile infection in hospital patients in Perth, Western Australia. Anaerobe, 2022, 74, 102528.	1.0	3
3	Ridinilazole: a novel, narrow-spectrum antimicrobial agent targeting Clostridium (Clostridioides) difficile. Letters in Applied Microbiology, 2022, 75, 526-536.	1.0	6
4	Whole-genome sequencing links Clostridium (Clostridioides) difficile in a single hospital to diverse environmental sources in the community. Journal of Applied Microbiology, 2022, 133, 1156-1168.	1.4	13
5	Clostridioides (Clostridium) difficile in children with diarrhoea in Vietnam. Anaerobe, 2022, , 102550.	1.0	4
6	Global evolutionary dynamics and resistome analysis of Clostridioides difficile ribotype 017. Microbial Genomics, 2022, 8, .	1.0	4
7	Evaluation of the antimicrobial activity of ridinilazole and six comparators against Chinese, Japanese and South Korean strains of <i>Clostridioides difficile</i> Journal of Antimicrobial Chemotherapy, 2021, 76, 967-972.	1.3	4
8	Clostridioides difficile colonization and infection in a cohort of Australian adults with cystic fibrosis. Journal of Hospital Infection, 2021, 113, 44-51.	1.4	4
9	<i>Clostridioides difficile</i> infection in the Asia-Pacific region. Emerging Microbes and Infections, 2020, 9, 42-52.	3.0	47
10	Antimicrobial resistance in <i>Clostridium difficile < /i> ribotype 017. Expert Review of Anti-Infective Therapy, 2020, 18, 17-25.</i>	2.0	28
11	Antimicrobial Susceptibilities of Clostridium difficile Isolates from 12 Asia-Pacific Countries in 2014 and 2015. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	26
12	Microbiological evaluation of the ability of the DEKO-190 Washer/Disinfector to remove Clostridium difficile spores from bedpan surfaces. Infection, Disease and Health, 2019, 24, 208-211.	0.5	1
13	Different molecular characteristics and antimicrobial resistance profiles of <i>Clostridium difficile</i> in the Asia-Pacific region. Emerging Microbes and Infections, 2019, 8, 1553-1562.	3.0	17
14	<i>Clostridium difficile</i> ribotype 017 â€" characterization, evolution and epidemiology of the dominant strain in Asia. Emerging Microbes and Infections, 2019, 8, 796-807.	3.0	61
15	Recurrence ofClostridium difficileinfection in the Western Australian population. Epidemiology and Infection, 2019, 147, e153.	1.0	10
16	Clostridium difficile in Asia: Opportunities for One Health Management. Tropical Medicine and Infectious Disease, 2019, 4, 7.	0.9	12
17	Wave 2 strains of atypical Vibrio cholerae El Tor caused the 2009–2011 cholera outbreak in Papua New Guinea. Microbial Genomics, 2019, 5, .	1.0	4
18	Clostridium difficile Guidelines. Clinical Infectious Diseases, 2018, 67, 1639.	2.9	8

#	Article	IF	CITATIONS
19	Evaluation of the Cepheid ® Xpert ® C.Âdifficile binary toxin (BT) diagnostic assay. Anaerobe, 2018, 51, 12-16.	1.0	3
20	High Prevalence of Toxigenic and Nontoxigenic Clostridium difficile Strains in Malaysia. Journal of Clinical Microbiology, 2018, 56, .	1.8	24
21	Laboratory-based surveillance of Clostridium difficile strains circulating in the Australian healthcare setting in 2012. Pathology, 2017, 49, 309-313.	0.3	24
22	Prevalence and molecular epidemiology of Clostridium difficile infection in Indonesia. New Microbes and New Infections, 2017, 18, 34-37.	0.8	31
23	Prevalence of <i>Clostridium difficile </i> infection and colonization in a tertiary hospital and elderly community of North-Eastern Peninsular Malaysia. Epidemiology and Infection, 2017, 145, 3012-3019.	1.0	11
24	Community-associated Clostridium difficile infection in emergency department patients in Western Australia. Anaerobe, 2017, 48, 121-125.	1.0	22
25	Exposure to environmental microbiota explains persistent abdominal pain and irritable bowel syndrome after a major flood. Gut Pathogens, 2017, 9, 75.	1.6	33
26	Predictors of pneumococcal carriage and the effect of the 13-valent pneumococcal conjugate vaccination in the Western Australian Aboriginal population. Pneumonia (Nathan Qld), 2017, 9, 14.	2.5	21
27	Laboratory-based surveillance of Clostridium difficile circulating in Australia, September – November 2010. Pathology, 2016, 48, 257-260.	0.3	20
28	Routine detection of Clostridium difficile in Western Australia. Anaerobe, 2016, 37, 34-37.	1.0	12
29	Genome Analysis of Clostridium difficile PCR Ribotype 014 Lineage in Australian Pigs and Humans Reveals a Diverse Genetic Repertoire and Signatures of Long-Range Interspecies Transmission. Frontiers in Microbiology, 2016, 7, 2138.	1.5	117
30	Molecular methods for detecting and typing of Clostridium difficile. Pathology, 2015, 47, 211-218.	0.3	21
31	Incorrect diagnosis of Clostridium difficile infection in a university hospital in Japan. Journal of Infection and Chemotherapy, 2015, 21, 718-722.	0.8	30
32	Epidemiology of Clostridium difficile infection in two tertiary-care hospitals in Perth, Western Australia: a cross-sectional study. New Microbes and New Infections, 2014, 2, 64-71.	0.8	54
33	The emergence of community-onset Clostridium difficile infection in a tertiary hospital in Singapore: A cause for concern. International Journal of Antimicrobial Agents, 2014, 43, 47-51.	1.1	22
34	Epidemiology of Clostridium difficile infection in Asia. Antimicrobial Resistance and Infection Control, 2013, 2, 21.	1.5	186
35	High Nasopharyngeal Carriage of Non-Vaccine Serotypes in Western Australian Aboriginal People Following 10 Years of Pneumococcal Conjugate Vaccination. PLoS ONE, 2013, 8, e82280.	1.1	16
36	Clonal Origins of Vibrio cholerae O1 El Tor Strains, Papua New Guinea, 2009–2011. Emerging Infectious Diseases, 2011, 17, 2063-5.	2.0	24

3