Mary J Wirth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8396558/publications.pdf

Version: 2024-02-01

53	1,739	22	276875 41 g-index
papers	citations	h-index	
55	55	55	1507
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Surface-Initiated Radical Polymerization on Porous Silica. Analytical Chemistry, 1997, 69, 4577-4580.	6.5	185
2	Kinetics of Surface-Initiated Atom Transfer Radical Polymerization of Acrylamide on Silica. Macromolecules, 2002, 35, 2919-2925.	4.8	167
3	Chemical Modification of the Surface of Poly(dimethylsiloxane) by Atom-Transfer Radical Polymerization of Acrylamide. Langmuir, 2002, 18, 9971-9976.	3 . 5	154
4	Surface-Confined Living Radical Polymerization for Coatings in Capillary Electrophoresis. Analytical Chemistry, 1998, 70, 4023-4029.	6.5	131
5	Single-Molecule Probing of Mixed-Mode Adsorption at a Chromatographic Interface. Analytical Chemistry, 1998, 70, 5264-5271.	6. 5	86
6	Slip Flow in Colloidal Crystals for Ultraefficient Chromatography. Journal of the American Chemical Society, 2012, 134, 10780-10782.	13.7	79
7	Adsorption and Diffusion of Single Molecules at Chromatographic Interfaces. Journal of Physical Chemistry B, 2003, 107, 6258-6268.	2.6	70
8	Spectroscopic Observation of Adsorption to Active Silanols. Analytical Chemistry, 1999, 71, 3911-3917.	6.5	51
9	Submicrometer Plate Heights for Capillaries Packed with Silica Colloidal Crystals. Analytical Chemistry, 2010, 82, 2175-2177.	6.5	48
10	Slip Flow through Colloidal Crystals of Varying Particle Diameter. ACS Nano, 2013, 7, 725-731.	14.6	47
11	Submicrometer Particles and Slip Flow in Liquid Chromatography. Analytical Chemistry, 2015, 87, 2520-2526.	6.5	43
12	Plate Heights below 50 nm for Protein Electrochromatography Using Silica Colloidal Crystals. Analytical Chemistry, 2010, 82, 10216-10221.	6.5	41
13	Single-Molecule Resolution and Fluorescence Imaging of Mixed-Mode Sorption of a Dye at the Interface of C18 and Acetonitrile/Water. Analytical Chemistry, 2002, 74, 386-393.	6.5	39
14	Polyacrylamide brush layer for hydrophilic interaction liquid chromatography of intact glycoproteins. Journal of Chromatography A, 2013, 1301, 156-161.	3.7	36
15	Single-Molecule Study of an Adsorbed Oligonucleotide Undergoing Both Lateral Diffusion and Strong Adsorption. Journal of Physical Chemistry B, 2001, 105, 1472-1477.	2.6	33
16	Sintered Silica Colloidal Crystals with Fully Hydroxylated Surfaces. Langmuir, 2007, 23, 8554-8559.	3.5	33
17	Lateral Diffusion of 1,1â€-Dioctadecyl-3,3,3†3†- tetramethylindocarbocyanine Perchlorate at the Interfaces of C18and Chromatographic Solvents. Analytical Chemistry, 2000, 72, 3725-3730.	6.5	31
18	Native Reversed-Phase Liquid Chromatography: A Technique for LCMS of Intact Antibody–Drug Conjugates. Analytical Chemistry, 2019, 91, 2805-2812.	6. 5	31

#	Article	IF	Citations
19	Fluorescence Imaging of the Desorption of Dye from Fused Silica versus Silica Gel. Analytical Chemistry, 2003, 75, 3073-3078.	6.5	28
20	Protein UTLC-MALDI–MS using thin films of submicrometer silica particles. Journal of Chromatography A, 2011, 1218, 7196-7202.	3.7	23
21	RPLC of Intact Proteins Using Sub-0.5 μm Particles and Commercial Instrumentation. Analytical Chemistry, 2013, 85, 6820-6825.	6.5	23
22	Lateral Diffusion of an Adsorbate at Chromatographic Octadecylsiloxane/Water Interfaces of Varying Hydrocarbon Density. Journal of Physical Chemistry B, 1997, 101, 5545-5548.	2.6	22
23	Insights from theory and experiments on slip flow in chromatography. Journal of Separation Science, 2013, 36, 1871-1876.	2.5	22
24	Self-assembled alkylsilane monolayers for the preparation of stable and efficient coatings in capillary electrophoresis. Journal of Separation Science, 1994, 6, 571-576.	1.0	21
25	Spectroscopic Probing of Mixed-Mode Adsorption of Ru(bpy)32+to Silica. Analytical Chemistry, 1996, 68, 4119-4123.	6.5	21
26	Temperature Dependence of the Lateral Diffusion of Acridine Orange at Water/Hydrocarbon Interfaces. The Journal of Physical Chemistry, 1996, 100, 10304-10309.	2.9	21
27	Irreversible Adsorption of Lysozyme to Polishing Marks on Silica. Langmuir, 2000, 16, 7279-7284.	3.5	20
28	Annealing of silica to reduce the concentration of isolated silanols and peak tailing in reverse phase liquid chromatography. Journal of Chromatography A, 2011, 1218, 5131-5135.	3.7	20
29	Fundamentals of Protein Separations: 50 Years of Nanotechnology, and Growing. Annual Review of Analytical Chemistry, 2008, 1, 833-855.	5.4	19
30	Effect of immobilization on the antimicrobial activity of a cysteine-terminated antimicrobial Peptide Cecropin P1 tethered to silica nanoparticle against E. coli O157:H7 EDL933. Colloids and Surfaces B: Biointerfaces, 2017, 156, 305-312.	5.0	18
31	Preparation of Mixed C ₁₈ /C ₁ Horizontally Polymerized Chromatographic Phases. Journal of Liquid Chromatography and Related Technologies, 1996, 19, 2799-2810.	1.0	17
32	Trajectory of isoelectric focusing from gels to capillaries to immobilized gradients in capillaries. Proteomics, 2012, 12, 2918-2926.	2.2	17
33	Ubiquitin Chains Modified by the Bacterial Ligase SdeA Are Protected from Deubiquitinase Hydrolysis. Biochemistry, 2017, 56, 4762-4766.	2.5	16
34	pH dependence of tailing in reversed-phase chromatography of a cationic dye: measurement of the strong adsorption site surface density. Journal of Chromatography A, 2004, 1060, 127-134.	3.7	15
35	Measurement and simulation of tailing zones of a cationic dye in analytical-scale reversed phase chromatography. Journal of Chromatography A, 2004, 1034, 69-75.	3.7	14
36	Modeling of protein electrophoresis in silica colloidal crystals having brush layers of polyacrylamide. Electrophoresis, 2013, 34, 753-760.	2.4	12

#	Article	IF	Citations
37	Electrostatic Interactions between Ru(bpy)32+and Chromatographic Surfaces. Analytical Chemistry, 1997, 69, 2258-2261.	6.5	11
38	Silica Colloidal Crystals as Emerging Materials for High-Throughput Protein Electrophoresis. AAPS Journal, 2013, 15, 962-969.	4.4	9
39	Chromatographic efficiency and selectivity in top-down proteomics of histones. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1044-1045, 47-53.	2.3	8
40	Obstructed Diffusion in Silica Colloidal Crystals. Journal of Physical Chemistry A, 2013, 117, 6244-6249.	2.5	7
41	Making Sharper Peaks for Reverse-Phase Liquid Chromatography of Proteins. Annual Review of Analytical Chemistry, 2020, 13, 363-380.	5.4	7
42	Fluorescent Probes for Monitoring Serine Ubiquitination. Biochemistry, 2020, 59, 1309-1313.	2.5	6
43	Probing Topography and Tailing for Commercial Stationary Phases Using AFM, FT-IR, and HPLC. Analytical Chemistry, 2006, 78, 6457-6464.	6.5	5
44	In-column bonded phase polymerization for improved packing uniformity. Journal of Separation Science, 2017, 40, 2170-2177.	2.5	5
45	Single-Molecule Spectroscopy and Fluorescence Correlation Spectroscopy of the Lateral Transport of the T3 Promoter Primer at a Chemical Interface. Applied Spectroscopy, 2001, 55, 1013-1017.	2.2	4
46	Field-Free Remobilization of Proteins after Isoelectric Focusing in Packed Capillaries. Analytical Chemistry, 2010, 82, 8910-8915.	6.5	4
47	Electrophoresis of megaDalton proteins inside colloidal silica. Electrophoresis, 2019, 40, 817-823.	2.4	4
48	Single Molecule Study of the Lateral Transport of Four Homooligoncleotides at the Interface of Water and Chemically Modifed Silica. Journal of Physical Chemistry B, 2001, 105, 8679-8684.	2.6	3
49	Alleviating nonlinear behavior of disulfide isoforms in the reversed-phase liquid chromatography of IgG2. Journal of Chromatography A, 2015, 1410, 147-153.	3.7	3
50	Evaluation of particle and bed integrity of aqueous size-exclusion columns packed with sub-2µm particles operated at high pressure. Journal of Chromatography A, 2020, 1621, 461064.	3.7	3
51	Ultra High Efficiency Protein Separations with Submicrometer Silica Using Slip Flow. LC-GC North America, 2012, 30, 890-897.	0.5	3
52	Reply to Comment on "Submicrometer Plate Heights for Capillaries Packed with Silica Colloidal Crystals― Analytical Chemistry, 2011, 83, 459-459.	6.5	1
53	Proteinâ€induced conformational change in glycans decreases the resolution of glycoproteins in hydrophilic interaction liquid chromatography. Journal of Separation Science, 2021, 44, 1581-1591.	2.5	1