
Nuria Malats

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8396401/publications.pdf Version: 2024-02-01

Νιίσια Μαίατς

	Article	IF	CITATIONS
1	A Consensus Molecular Classification of Muscle-invasive Bladder Cancer. European Urology, 2020, 77, 420-433.	0.9	741
2	Prognosis Research Strategy (PROGRESS) 2: Prognostic Factor Research. PLoS Medicine, 2013, 10, e1001380.	3.9	561
3	NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet, The, 2005, 366, 649-659.	6.3	558
4	Detectable clonal mosaicism and its relationship to aging and cancer. Nature Genetics, 2012, 44, 651-658.	9.4	519
5	A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nature Genetics, 2010, 42, 978-984.	9.4	493
6	Comprehensive Transcriptional Analysis of Early-Stage Urothelial Carcinoma. Cancer Cell, 2016, 30, 27-42.	7.7	486
7	Bladder Cancer and Exposure to Water Disinfection By-Products through Ingestion, Bathing, Showering, and Swimming in Pools. American Journal of Epidemiology, 2006, 165, 148-156.	1.6	471
8	Prospective Study of FGFR3 Mutations As a Prognostic Factor in Nonmuscle Invasive Urothelial Bladder Carcinomas. Journal of Clinical Oncology, 2006, 24, 3664-3671.	0.8	300
9	Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nature Genetics, 2014, 46, 994-1000.	9.4	294
10	P53 as a prognostic marker for bladder cancer: a meta-analysis and review. Lancet Oncology, The, 2005, 6, 678-686.	5.1	280
11	Recurrent inactivation of STAG2 in bladder cancer is not associated with aneuploidy. Nature Genetics, 2013, 45, 1464-1469.	9.4	224
12	Exocrine pancreatic cancer: Symptoms at presentation and their relation to tumour site and stage. Clinical and Translational Oncology, 2005, 7, 189-197.	1.2	221
13	Epidemiology of urinary bladder cancer: from tumor development to patient's death. World Journal of Urology, 2007, 25, 285-295.	1.2	221
14	Telomerase Reverse Transcriptase Promoter Mutations in Bladder Cancer: High Frequency Across Stages, Detection in Urine, and Lack of Association with Outcome. European Urology, 2014, 65, 360-366.	0.9	215
15	PIK3CA Mutations Are an Early Genetic Alteration Associated with FGFR3 Mutations in Superficial Papillary Bladder Tumors. Cancer Research, 2006, 66, 7401-7404.	0.4	213
16	GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer. Gut, 2017, 66, 1665-1676.	6.1	212
17	Genomic DNA hypomethylation as a biomarker for bladder cancer susceptibility in the Spanish Bladder Cancer Study: a case–control study. Lancet Oncology, The, 2008, 9, 359-366.	5.1	211
18	Polymorphisms in <i>GSTT1</i> , <i>GSTZ1</i> , and <i>CYP2E1</i> , Disinfection By-products, and Risk of Bladder Cancer in Spain. Environmental Health Perspectives, 2010, 118, 1545-1550.	2.8	194

#	Article	IF	CITATIONS
19	Prognostic Factors and Risk Groups in T1G3 Non–Muscle-invasive Bladder Cancer Patients Initially Treated with Bacillus Calmette-Guérin: Results of a Retrospective Multicenter Study of 2451 Patients. European Urology, 2015, 67, 74-82.	0.9	190
20	Gene Expression Signatures Predict Outcome in Non–Muscle-Invasive Bladder Carcinoma: A Multicenter Validation Study. Clinical Cancer Research, 2007, 13, 3545-3551.	3.2	189
21	Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nature Communications, 2018, 9, 556.	5.8	188
22	Genome-wide association study identifies two susceptibility loci for osteosarcoma. Nature Genetics, 2013, 45, 799-803.	9.4	181
23	Serum concentrations of organochlorine compounds and K-ras mutations in exocrine pancreatic cancer. Lancet, The, 1999, 354, 2125-2129.	6.3	166
24	Identification of a Three-Biomarker Panel in Urine for Early Detection of Pancreatic Adenocarcinoma. Clinical Cancer Research, 2015, 21, 3512-3521.	3.2	161
25	Association of germline variants in the APOBEC3 region with cancer risk and enrichment with APOBEC-signature mutations in tumors. Nature Genetics, 2016, 48, 1330-1338.	9.4	161
26	An integrated multi-omics analysis identifies prognostic molecular subtypes of non-muscle-invasive bladder cancer. Nature Communications, 2021, 12, 2301.	5.8	159
27	Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for Thirteen Cancer Types. Journal of the National Cancer Institute, 2015, 107, djv279.	3.0	152
28	Resection of pancreatic cancer in Europe and USA: an international large-scale study highlighting large variations. Gut, 2019, 68, 130-139.	6.1	150
29	Smoking and Bladder Cancer in Spain: Effects of Tobacco Type, Timing, Environmental Tobacco Smoke, and Gender. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 1348-1354.	1.1	148
30	Circulating tumor cells (CTC) and KRAS mutant circulating free DNA (cfDNA) detection in peripheral blood as biomarkers in patients diagnosed with exocrine pancreatic cancer. BMC Cancer, 2015, 15, 797.	1.1	147
31	Genetic Variation in the Nucleotide Excision Repair Pathway and Bladder Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 536-542.	1.1	139
32	Epidemiology of Bladder Cancer. Hematology/Oncology Clinics of North America, 2015, 29, 177-189.	0.9	138
33	Genome-wide association study identifies multiple loci associated with bladder cancer risk. Human Molecular Genetics, 2014, 23, 1387-1398.	1.4	137
34	Mosaic loss of chromosome Y is associated with common variation near TCL1A. Nature Genetics, 2016, 48, 563-568.	9.4	134
35	FGFR3 and Tp53 Mutations in T1G3 Transitional Bladder Carcinomas: Independent Distribution and Lack of Association with Prognosis. Clinical Cancer Research, 2005, 11, 5444-5450.	3.2	122
36	AUC-RF: A New Strategy for Genomic Profiling with Random Forest. Human Heredity, 2011, 72, 121-132.	0.4	122

#	Article	IF	CITATIONS
37	Large-Scale Evaluation of Candidate Genes Identifies Associations between VEGF Polymorphisms and Bladder Cancer Risk. PLoS Genetics, 2007, 3, e29.	1.5	119
38	Statistical consideration for clinical biomarker research in bladder cancer. Urologic Oncology: Seminars and Original Investigations, 2010, 28, 389-400.	0.8	119
39	Food, nutrient and heterocyclic amine intake and the risk of bladder cancer. European Journal of Cancer, 2007, 43, 1731-1740.	1.3	117
40	Searching for urine biomarkers of bladder cancer recurrence using a liquid chromatography–mass spectrometry and capillary electrophoresis–mass spectrometry metabolomics approach. Journal of Chromatography A, 2013, 1318, 163-170.	1.8	117
41	Genetic variation in the base excision repair pathway and bladder cancer risk. Human Genetics, 2007, 121, 233-242.	1.8	113
42	Mosaic Uniparental Disomies and Aneuploidies as Large Structural Variants of the Human Genome. American Journal of Human Genetics, 2010, 87, 129-138.	2.6	111
43	The impact of reâ€transurethral resection on clinical outcomes in a large multicentre cohort of patients with T1 highâ€grade/Grade 3 bladder cancer treated with bacille Calmette–Guérin. BJU International, 2016, 118, 44-52.	1.3	110
44	Cystic fibrosis transmembrane regulator (CFTR) Delta F508 mutation and 5T allele in patients with chronic pancreatitis and exocrine pancreatic cancer. Gut, 2001, 48, 70-74.	6.1	107
45	Polymorphisms in DNA Repair Genes, Smoking, and Bladder Cancer Risk: Findings from the International Consortium of Bladder Cancer. Cancer Research, 2009, 69, 6857-6864.	0.4	107
46	Common Genetic Polymorphisms Modify the Effect of Smoking on Absolute Risk of Bladder Cancer. Cancer Research, 2013, 73, 2211-2220.	0.4	107
47	A faecal microbiota signature with high specificity for pancreatic cancer. Gut, 2022, 71, 1359-1372.	6.1	104
48	Validation of a DNA Methylation-Mutation Urine Assay to Select Patients with Hematuria for Cystoscopy. Journal of Urology, 2017, 197, 590-595.	0.2	102
49	Characterization of Large Structural Genetic Mosaicism in Human Autosomes. American Journal of Human Genetics, 2015, 96, 487-497.	2.6	101
50	Transcriptional regulation by NR5A2 links differentiation and inflammation in the pancreas. Nature, 2018, 554, 533-537.	13.7	101
51	A genome-wide association study of bladder cancer identifies a new susceptibility locus within SLC14A1, a urea transporter gene on chromosome 18q12.3. Human Molecular Genetics, 2011, 20, 4282-4289.	1.4	100
52	Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data. PLoS Genetics, 2016, 12, e1006493.	1.5	98
53	Genome-wide association study identifies inversion in the <i>CTRB1-CTRB2</i> locus to modify risk for alcoholic and non-alcoholic chronic pancreatitis. Gut, 2018, 67, 1855-1863.	6.1	97
54	Selenium and Bladder Cancer Risk: a Meta-analysis. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 2407-2415.	1.1	96

#	Article	IF	CITATIONS
55	Occurrence, trends and environmental etiology of pancreatic cancer. Scandinavian Journal of Work, Environment and Health, 1998, 24, 165-174.	1.7	92
56	mbmdr: an R package for exploring gene–gene interactions associated with binary or quantitative traits. Bioinformatics, 2010, 26, 2198-2199.	1.8	90
57	Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33. Human Molecular Genetics, 2014, 23, 6616-6633.	1.4	90
58	Pancreatic cancer risk and levels of trace elements. Gut, 2012, 61, 1583-1588.	6.1	89
59	Bladder cancer risk and genetic variation in AKR1C3 and other metabolizing genes. Carcinogenesis, 2008, 29, 1955-1962.	1.3	88
60	Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21. Oncotarget, 2016, 7, 66328-66343.	0.8	88
61	Evaluation of genetic variation in the double-strand break repair pathway and bladder cancer risk. Carcinogenesis, 2007, 28, 1788-1793.	1.3	87
62	Inflammatory Biomarkers and Bladder Cancer Prognosis: A Systematic Review. European Urology, 2014, 66, 1078-1091.	0.9	86
63	Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome. Nature Communications, 2016, 7, 11843.	5.8	86
64	Challenges in the Integration of Omics and Non-Omics Data. Genes, 2019, 10, 238.	1.0	86
65	Risk of Bladder Cancer Associated with Family History of Cancer: Do Low-Penetrance Polymorphisms Account for the Increase in Risk?. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 1595-1600.	1.1	85
66	Multiple oncogenic mutations and clonal relationship in spatially distinct benign human epidermal tumors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20780-20785.	3.3	84
67	Risk of Pancreatic Cancer in Breast Cancer Families from the Breast Cancer Family Registry. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 803-811.	1.1	83
68	Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case-control study. Breast Cancer Research, 2010, 12, R110.	2.2	82
69	Improving strategies for detecting genetic patterns of disease susceptibility in association studies. Statistics in Medicine, 2008, 27, 6532-6546.	0.8	81
70	Nitrate in drinking water and bladder cancer risk in Spain. Environmental Research, 2015, 137, 299-307.	3.7	81
71	Common genetic variants in the <i>PSCA</i> gene influence gene expression and bladder cancer risk. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4974-4979.	3.3	79
72	Molecular Markers Increase Precision of the European Association of Urology Non–Muscle-Invasive Bladder Cancer Progression Risk Groups. Clinical Cancer Research, 2018, 24, 1586-1593.	3.2	79

#	Article	IF	CITATIONS
73	Cigarette smoking and K-ras mutations in pancreas, lung and colorectal adenocarcinomas: Etiopathogenic similarities, differences and paradoxes. Mutation Research - Reviews in Mutation Research, 2009, 682, 83-93.	2.4	76
74	Genetic and Non-genetic Predictors of LINE-1 Methylation in Leukocyte DNA. Environmental Health Perspectives, 2013, 121, 650-656.	2.8	75
75	Prognostic Impact of a 12-gene Progression Score in Non–muscle-invasive Bladder Cancer: A Prospective Multicentre Validation Study. European Urology, 2017, 72, 461-469.	0.9	74
76	Mapping of the UGT1A locus identifies an uncommon coding variant that affects mRNA expression and protects from bladder cancer. Human Molecular Genetics, 2012, 21, 1918-1930.	1.4	71
77	<i>FGFR3</i> , <i>TERT</i> and <i>OTX1</i> as a Urinary Biomarker Combination for Surveillance of Patients with Bladder Cancer in a Large Prospective Multicenter Study. Journal of Urology, 2017, 197, 1410-1418.	0.2	70
78	Integration Analysis of Three Omics Data Using Penalized Regression Methods: An Application to Bladder Cancer. PLoS Genetics, 2015, 11, e1005689.	1.5	68
79	Association between coffee drinking and K-ras mutations in exocrine pancreatic cancer. PANKRAS II Study Group. Journal of Epidemiology and Community Health, 1999, 53, 702-709.	2.0	66
80	Air pollution and risk of urinary bladder cancer in a case-control study in Spain. Occupational and Environmental Medicine, 2008, 65, 56-60.	1.3	66
81	International Registries of Families at High Risk of Pancreatic Cancer. Pancreatology, 2008, 8, 566-576.	0.5	64
82	Occupation and bladder cancer in a hospital-based case-control study in Spain. Occupational and Environmental Medicine, 2008, 65, 347-353.	1.3	64
83	Total Fluid and Water Consumption and the Joint Effect of Exposure to Disinfection By-Products on Risk of Bladder Cancer. Environmental Health Perspectives, 2007, 115, 1569-1572.	2.8	63
84	Genetic Susceptibility to Distinct Bladder Cancer Subphenotypes. European Urology, 2010, 57, 283-292.	0.9	63
85	Ki-ras mutations in exocrine pancreatic cancer: Association with clinico-pathological characteristics and with tobacco and alcohol consumption. International Journal of Cancer, 1997, 70, 661-667.	2.3	62
86	Polymorphisms in one-carbon metabolism and trans-sulfuration pathway genes and susceptibility to bladder cancer. International Journal of Cancer, 2007, 120, 2452-2458.	2.3	60
87	A single nucleotide polymorphism tags variation in the arylamine N-acetyltransferase 2 phenotype in populations of European background. Pharmacogenetics and Genomics, 2011, 21, 231-236.	0.7	60
88	Assessment of lifetime exposure to trihalomethanes through different routes. Occupational and Environmental Medicine, 2006, 63, 273-277.	1.3	59
89	A Transcriptome-Wide Association Study Identifies Novel Candidate Susceptibility Genes for Pancreatic Cancer. Journal of the National Cancer Institute, 2020, 112, 1003-1012.	3.0	59
90	The p53 Pathway and Outcome among Patients with T1G3 Bladder Tumors. Clinical Cancer Research, 2006, 12, 6029-6036.	3.2	57

#	Article	IF	CITATIONS
91	Assessment of copy number variation using the Illumina Infinium 1M SNP-array: a comparison of methodological approaches in the Spanish Bladder Cancer/EPICURO study. Human Mutation, 2011, 32, 240-248.	1.1	57
92	Reduced risk of pancreatic cancer associated with asthma and nasal allergies. Gut, 2017, 66, 314-322.	6.1	56
93	The efficacy of BCG TICE and BCG Connaught in a cohort of 2,099 patients with T1G3 non–muscle-invasive bladder cancer. Urologic Oncology: Seminars and Original Investigations, 2016, 34, 484.e19-484.e25.	0.8	53
94	ARID1A Alterations Are Associated with FGFR3-Wild Type, Poor-Prognosis, Urothelial Bladder Tumors. PLoS ONE, 2013, 8, e62483.	1.1	52
95	Occupational exposure to dyes, metals, polycyclic aromatic hydrocarbons and other agents and K-ras activation in human exocrine pancreatic cancer. International Journal of Cancer, 2003, 107, 635-641.	2.3	51
96	Genome-wide interaction study of smoking and bladder cancer risk. Carcinogenesis, 2014, 35, 1737-1744.	1.3	50
97	Screening for bladder cancer: a perspective. World Journal of Urology, 2008, 26, 13-18.	1.2	49
98	Occupational exposure to organic solvents and K-ras mutations in exocrine pancreatic cancer. Carcinogenesis, 2002, 23, 101-106.	1.3	48
99	Gender-Related Differences in Clinical and Pathological Characteristics and Therapy of Bladder Cancer. European Urology, 2003, 43, 53-62.	0.9	47
100	Risk Prediction Scores for Recurrence and Progression of Non-Muscle Invasive Bladder Cancer: An International Validation in Primary Tumours. PLoS ONE, 2014, 9, e96849.	1.1	46
101	Transcriptome analysis of pancreatic cancer reveals a tumor suppressor function for HNF1A. Carcinogenesis, 2014, 35, 2670-2678.	1.3	46
102	Genetic Variations in the Sonic Hedgehog Pathway Affect Clinical Outcomes in Non–Muscle-Invasive Bladder Cancer. Cancer Prevention Research, 2010, 3, 1235-1245.	0.7	45
103	<i>TGFB1</i> and <i>TGFBR1</i> polymorphic variants in relationship to bladder cancer risk and prognosis. International Journal of Cancer, 2009, 124, 608-613.	2.3	44
104	Use of Analgesics and Nonsteroidal Anti-inflammatory Drugs, Genetic Predisposition, and Bladder Cancer Risk in Spain. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 1696-1702.	1.1	42
105	PanGen-Fam: Spanish registry of hereditary pancreatic cancer. European Journal of Cancer, 2015, 51, 1911-1917.	1.3	39
106	Pancreatic Cancer Risk in Relation to Lifetime Smoking Patterns, Tobacco Type, and Dose–Response Relationships. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1009-1018.	1.1	39
107	Identification of a novel susceptibility locus at 13q34 and refinement of the 20p12.2 region as a multi-signal locus associated with bladder cancer risk in individuals of European ancestry. Human Molecular Genetics, 2016, 25, 1203-1214.	1.4	38
108	Urinary pH, cigarette smoking and bladder cancer risk. Carcinogenesis, 2011, 32, 843-847.	1.3	37

#	Article	IF	CITATIONS
109	Analysis of molecular intra-patient variation and delineation of a prognostic 12-gene signature in non-muscle invasive bladder cancer; technology transfer from microarrays to PCR. British Journal of Cancer, 2012, 107, 1392-1398.	2.9	36
110	Deciphering the complex interplay between pancreatic cancer, diabetes mellitus subtypes and obesity/BMI through causal inference and mediation analyses. Gut, 2021, 70, gutjnl-2019-319990.	6.1	36
111	Large-Scale Pathway-Based Analysis of Bladder Cancer Genome-Wide Association Data from Five Studies of European Background. PLoS ONE, 2012, 7, e29396.	1.1	36
112	Validity of the hospital discharge diagnosis in epidemiologic studies of biliopancreatic pathology. PANKRAS II Study Group. European Journal of Epidemiology, 2000, 16, 533-541.	2.5	35
113	Coffee consumption, genetic susceptibility and bladder cancer risk. Cancer Causes and Control, 2009, 20, 121-127.	0.8	35
114	Correcting serum concentrations of organochlorine compounds by lipids: Alternatives to the organochlorine/total lipids ratio. Environment International, 2009, 35, 1080-1085.	4.8	35
115	Modification of Occupational Exposures on Bladder Cancer Risk by Common Genetic Polymorphisms. Journal of the National Cancer Institute, 2015, 107, djv223.	3.0	34
116	Evidence for an intensity-dependent interaction of NAT2 acetylation genotype and cigarette smoking in the Spanish Bladder Cancer Study. International Journal of Epidemiology, 2007, 36, 236-241.	0.9	33
117	Bladder Cancer Genetic Susceptibility. A Systematic Review. Bladder Cancer, 2018, 4, 215-226.	0.2	33
118	A combination of urinary biomarker panel and PancRISK score for earlier detection of pancreatic cancer: A case–control study. PLoS Medicine, 2020, 17, e1003489.	3.9	33
119	A large-scale assessment of two-way SNP interactions in breast cancer susceptibility using 46 450 cases and 42 461 controls from the breast cancer association consortium. Human Molecular Genetics, 2014, 23, 1934-1946.	1.4	32
120	Does increased urination frequency protect against bladder cancer?. International Journal of Cancer, 2008, 123, 1644-1648.	2.3	31
121	Plasma 25-Hydroxyvitamin D3 and Bladder Cancer Risk According to Tumor Stage and FGFR3 Status: A Mechanism-Based Epidemiological Study. Journal of the National Cancer Institute, 2012, 104, 1897-1904.	3.0	30
122	Vitamin D Metabolic Pathway Genes and Pancreatic Cancer Risk. PLoS ONE, 2015, 10, e0117574.	1.1	29
123	Risk of pancreatic cancer associated with family history of cancer and other medical conditions by accounting for smoking among relatives. International Journal of Epidemiology, 2018, 47, 473-483.	0.9	29
124	Recurrence, progression and cancer-specific mortality according to stage at re-TUR in T1G3 bladder cancer patients treated with BCG: not as bad as previously thought. World Journal of Urology, 2018, 36, 1621-1627.	1.2	29
125	A comprehensive analysis of candidate genes in familial pancreatic cancer families reveals a high frequency of potentially pathogenic germline variants. EBioMedicine, 2020, 53, 102675.	2.7	29
126	Family history of cancer and germline BRCA2 mutations in sporadic exocrine pancreatic cancer. Gut, 2002, 50, 653-657.	6.1	28

#	Article	IF	CITATIONS
127	Identification of New Genetic Susceptibility Loci for Breast Cancer Through Consideration of Geneâ€Environment Interactions. Genetic Epidemiology, 2014, 38, 84-93.	0.6	28
128	Immunohistochemistry-Based Taxonomical Classification of Bladder Cancer Predicts Response to Neoadjuvant Chemotherapy. Cancers, 2020, 12, 1784.	1.7	28
129	UEG position paper on pancreatic cancer. Bringing pancreatic cancer to the 21st century: Prevent, detect, and treat the disease earlier and better. United European Gastroenterology Journal, 2021, 9, 860-871.	1.6	28
130	Medical conditions in patients with pancreatic and biliary diseases: validity and agreement between data from questionnaires and medical records. PANKRAS II Study Group. Digestive Diseases and Sciences, 1999, 44, 2469-2477.	1.1	27
131	Confirmation of 5p12 As a Susceptibility Locus for Progesterone-Receptor–Positive, Lower Grade Breast Cancer. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 2222-2231.	1.1	27
132	Public health perspective: from personalized medicine to personal health. Personalized Medicine, 2012, 9, 115-119.	0.8	26
133	A Multicenter Trial Defining a Serum Protein Signature Associated with Pancreatic Ductal Adenocarcinoma. International Journal of Proteomics, 2015, 2015, 1-10.	2.0	26
134	Food and nutrient intakes and K-ras mutations in exocrine pancreatic cancer. Journal of Epidemiology and Community Health, 2007, 61, 641-649.	2.0	25
135	Framework for the Integration of Genomics, Epigenomics and Transcriptomics in Complex Diseases. Human Heredity, 2015, 79, 124-136.	0.4	25
136	Ambient air pollution and incident bladder cancer risk: Updated analysis of the Spanish Bladder Cancer Study. International Journal of Cancer, 2019, 145, 894-900.	2.3	25
137	Diesel exhaust and bladder cancer risk by pathologic stage and grade subtypes. Environment International, 2020, 135, 105346.	4.8	25
138	Timing of blood extraction in epidemiologic and proteomic studies: results and proposals from the PANKRAS II Study. European Journal of Epidemiology, 2007, 22, 577-588.	2.5	24
139	LINE-1 methylation in granulocyte DNA and trihalomethane exposure is associated with bladder cancer risk. Epigenetics, 2014, 9, 1532-1539.	1.3	24
140	The 19q12 Bladder Cancer GWAS Signal: Association with Cyclin E Function and Aggressive Disease. Cancer Research, 2014, 74, 5808-5818.	0.4	24
141	Cyclooxygenase-2 Expression in Bladder Cancer and Patient Prognosis: Results from a Large Clinical Cohort and Meta-Analysis. PLoS ONE, 2012, 7, e45025.	1.1	24
142	Coffee, pancreatic cancer, and K-ras mutations: updating the research agenda. Journal of Epidemiology and Community Health, 2000, 54, 656-659.	2.0	23
143	Gene-Environment Interactions in Pancreatic Cancer. Pancreatology, 2001, 1, 472-476.	0.5	23
144	Lifetime History of Tobacco Consumption and K-ras Mutations in Exocrine Pancreatic Cancer. Pancreas, 2007, 35, 135-141.	0.5	23

#	Article	IF	CITATIONS
145	Bladder cancer and seroreactivity to BK, JC and Merkel cell polyomaviruses: The Spanish bladder cancer study. International Journal of Cancer, 2013, 133, 597-603.	2.3	23
146	Toward the integration of <i>Omics</i> data in epidemiological studies: still a "long and winding road― Genetic Epidemiology, 2016, 40, 558-569.	0.6	23
147	Diagnostic certainty and potential for misclassification in exocrine pancreatic cancer. Journal of Clinical Epidemiology, 1994, 47, 1069-1079.	2.4	22
148	The International Bladder Cancer Bank: Proposal for a new study concept. Urologic Oncology: Seminars and Original Investigations, 2004, 22, 277-284.	0.8	21
149	Application of Multi-SNP Approaches Bayesian LASSO and AUC-RF to Detect Main Effects of Inflammatory-Gene Variants Associated with Bladder Cancer Risk. PLoS ONE, 2013, 8, e83745.	1.1	21
150	Socioeconomic status and exposure to disinfection by-products in drinking water in Spain. Environmental Health, 2011, 10, 18.	1.7	20
151	Select Your SNPs (SYSNPs): a web tool for automatic and massive selection of SNPs. International Journal of Data Mining and Bioinformatics, 2012, 6, 324.	0.1	20
152	A systems approach identifies time-dependent associations of multimorbidities with pancreatic cancer risk. Annals of Oncology, 2017, 28, 1618-1624.	0.6	20
153	The influence of lipid and lifestyle factors upon correlations between highly prevalent organochlorine compounds in patients with exocrine pancreatic cancer. Environment International, 2007, 33, 946-954.	4.8	19
154	Learning from Case Reports. Journal of Clinical Epidemiology, 1998, 51, 1215-1221.	2.4	18
155	The relative influence of diet and serum concentrations of organochlorine compounds on K-ras mutations in exocrine pancreatic cancer. Chemosphere, 2010, 79, 686-697.	4.2	18
156	Genetic Variation in the TP53 Pathway and Bladder Cancer Risk. A Comprehensive Analysis. PLoS ONE, 2014, 9, e89952.	1.1	18
157	Identification and replication of the interplay of four genetic high-risk variants for urinary bladder cancer. Carcinogenesis, 2017, 38, 1167-1179.	1.3	18
158	Associations between Genetically Predicted Blood Protein Biomarkers and Pancreatic Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1501-1508.	1.1	18
159	Do we believe what patients say about their neoplastic symptoms?. European Journal of Epidemiology, 1996, 12, 553-562.	2.5	17
160	Bladder cancer and reproductive factors among women in Spain. Cancer Causes and Control, 2009, 20, 1907-1913.	0.8	17
161	Biological and Statistical Approaches for Modeling Exposure to Specific Trihalomethanes and Bladder Cancer Risk. American Journal of Epidemiology, 2013, 178, 652-660.	1.6	17
162	Next generation modeling in GWAS: comparing different genetic architectures. Human Genetics, 2014, 133, 1235-1253.	1.8	17

#	Article	IF	CITATIONS
163	LINE-1 methylation in leukocyte DNA, interaction with phosphatidylethanolamine N-methyltransferase variants and bladder cancer risk. British Journal of Cancer, 2014, 110, 2123-2130.	2.9	17
164	In pancreatic ductal adenocarcinoma blood concentrations of some organochlorine compounds and coffee intake are independently associated with KRAS mutations. Mutagenesis, 2009, 24, 513-521.	1.0	15
165	Predictors of oncological outcomes in T1G3 patients treated with BCG who undergo radical cystectomy. World Journal of Urology, 2018, 36, 1775-1781.	1.2	15
166	Bringing Greater Accuracy to Europe's Healthcare Systems: The Unexploited Potential of Biomarker Testing in Oncology. Biomedicine Hub, 2020, 5, 1-42.	0.4	15
167	A multilayered post-GWAS assessment on genetic susceptibility to pancreatic cancer. Genome Medicine, 2021, 13, 15.	3.6	15
168	A 584Âbp deletion in CTRB2 inhibits chymotrypsin B2 activity and secretion and confers risk of pancreatic cancer. American Journal of Human Genetics, 2021, 108, 1852-1865.	2.6	15
169	Review of studies of selected metabolic polymorphisms and cancer. larc (international Agency for) Tj ETQq1	1 0.784314 rg 0.4	;BT /Overlock
170	Genome-wide CNV analysis replicates the association between GSTM1 deletion and bladder cancer: a support for using continuous measurement from SNP-array data. BMC Genomics, 2012, 13, 326.	1.2	14
171	Concentrations of trace elements and <i>KRAS</i> mutations in pancreatic ductal adenocarcinoma. Environmental and Molecular Mutagenesis, 2019, 60, 693-703.	0.9	14
172	Associations between pancreatic expression quantitative traits and risk of pancreatic ductal adenocarcinoma. Carcinogenesis, 2021, 42, 1037-1045.	1.3	14
173	Generalizing Molecular Results Arising from Incomplete Biological Samples: Expected Bias and Unexpected Findings. Annals of Epidemiology, 2002, 12, 7-14.	0.9	13
174	Genetic epidemiology of bladder cancer: Scaling up in the identification of low-penetrance genetic markers of bladder cancer risk and progression. Scandinavian Journal of Urology and Nephrology, 2008, 42, 131-140.	1.4	13
175	Bringing Onco-Innovation to Europe's Healthcare Systems: The Potential of Biomarker Testing, Real World Evidence, Tumour Agnostic Therapies to Empower Personalised Medicine. Cancers, 2021, 13, 583.	1.7	13
176	Clinical validity of detecting K-ras mutations for the diagnosis of exocrine pancreatic cancer: a prospective study in a clinically-relevant spectrum of patients. European Journal of Epidemiology, 2011, 26, 229-236.	2.5	12
177	Bratislava Statement: consensus recommendations for improving pancreatic cancer care. ESMO Open, 2020, 5, e001051.	2.0	12
178	Plasma protein biomarkers for early detection of pancreatic ductal adenocarcinoma. International Journal of Cancer, 2021, 148, 2048-2058.	2.3	12
179	Environmental and Genomic Factors as well as Interventions Influencing Smoking Cessation: A Systematic Review of Reviews and a Proposed Working Model. Public Health Genomics, 2013, 16, 159-173.	0.6	11
180	Whole Genome Prediction of Bladder Cancer Risk With the Bayesian LASSO. Genetic Epidemiology, 2014, 38, 467-476.	0.6	11

#	Article	IF	CITATIONS
181	Pancreatic cancer and autoimmune diseases: An association sustained by computational and epidemiological case–control approaches. International Journal of Cancer, 2019, 144, 1540-1549.	2.3	11
182	Estimating dietary intakes from a brief questionnaire: A simulation study of reliability in a molecular epidemiologic study of pancreatic and biliary diseases. European Journal of Epidemiology, 2006, 21, 417-426.	2.5	10
183	Next-generation Sequencing of Urologic Cancers: Next Is Now. European Urology, 2014, 66, 4-7.	0.9	10
184	Asthma status is associated with decreased risk of aggressive urothelial bladder cancer. International Journal of Cancer, 2018, 142, 470-476.	2.3	10
185	Association of Genetic Variants Affecting microRNAs and Pancreatic Cancer Risk. Frontiers in Genetics, 2021, 12, 693933.	1.1	10
186	CYP1B1 Polymorphisms and K-ras Mutations in Patients with Pancreatic Ductal Adenocarcinoma. Digestive Diseases and Sciences, 2008, 53, 1417-1421.	1.1	9
187	Determinants of Quality of Interview and Impact on Risk Estimates in a Case-Control Study of Bladder Cancer. American Journal of Epidemiology, 2009, 170, 237-243.	1.6	9
188	Lifetime history of alcohol consumption and Kâ€∢i>ras mutations in pancreatic ductal adenocarcinoma. Environmental and Molecular Mutagenesis, 2009, 50, 421-430.	0.9	9
189	The Inherited Genetic Component of Sporadic Pancreatic Adenocarcinoma. Pancreatology, 2009, 9, 206-214.	0.5	9
190	An Epistatic Interaction between the PAX8 and STK17B Genes in Papillary Thyroid Cancer Susceptibility. PLoS ONE, 2013, 8, e74765.	1.1	9
191	DNA Methylation–Derived Immune Cell Profiles, CpG Markers of Inflammation, and Pancreatic Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1577-1585.	1.1	9
192	Association of patients' sex with treatment outcomes after intravesical bacillus Calmette–Guérin immunotherapy for T1G3/HG bladder cancer. World Journal of Urology, 2021, 39, 3337-3344.	1.2	9
193	Hepcidin-regulating iron metabolism genes and pancreatic ductal adenocarcinoma: a pathway analysis of genome-wide association studies. American Journal of Clinical Nutrition, 2021, 114, 1408-1417.	2.2	9
194	Tumor-Infiltrating B- and T-Cell Repertoire in Pancreatic Cancer Associated With Host and Tumor Features. Frontiers in Immunology, 2021, 12, 730746.	2.2	9
195	Prediction of non-muscle invasive bladder cancer outcomes assessed by innovative multimarker prognostic models. BMC Cancer, 2016, 16, 351.	1.1	8
196	Inflammatory-Related Genetic Variants in Non–Muscle-Invasive Bladder Cancer Prognosis: A Multimarker Bayesian Assessment. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 1144-1150.	1.1	8
197	Smoking Modifies Pancreatic Cancer Risk Loci on 2q21.3. Cancer Research, 2021, 81, 3134-3143.	0.4	8
198	Bladder cancer and apoptosis: matters of life and death. Lancet Oncology, The, 2007, 8, 91-92.	5.1	7

#	Article	IF	CITATIONS
199	A dynamic model for the risk of bladder cancer progression. Statistics in Medicine, 2012, 31, 287-300.	0.8	7
200	Diagnostic and Prognostic Performance of Secreted Protein Acidic and Rich in Cysteine (SPARC) Assay for Detecting Primary and Recurrent Urinary Bladder Cancer. Proteomics - Clinical Applications, 2019, 13, 1800148.	0.8	7
201	Reply to â€~Mosaic loss of chromosome Y in leukocytes matters'. Nature Genetics, 2019, 51, 7-9.	9.4	7
202	Relationships of hepatic and pancreatic biomarkers with the cholestatic syndrome and tumor stage in pancreatic cancer. Biomarkers, 2012, 17, 557-565.	0.9	6
203	Mendelian Randomization Analysis of n-6 Polyunsaturated Fatty Acid Levels and Pancreatic Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2735-2739.	1.1	6
204	Advantage of Using Allele-Specific Copy Numbers When Testing for Association in Regions with Common Copy Number Variants. PLoS ONE, 2013, 8, e75350.	1.1	6
205	7q21-rs6964587 and breast cancer risk: an extended case-control study by the Breast Cancer Association Consortium. Journal of Medical Genetics, 2011, 48, 698-702.	1.5	5
206	CD8+ Cytotoxic Immune Infiltrate in Non-Muscle Invasive Bladder Cancer: A Standardized Methodology to Study Association with Clinico-Pathological Features and Prognosis. Bladder Cancer, 2019, 5, 159-169.	0.2	5
207	Genome-Wide Gene–Diabetes and Gene–Obesity Interaction Scan in 8,255 Cases and 11,900 Controls from PanScan and PanC4 Consortia. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1784-1791.	1.1	5
208	Genome-Wide Association Study Data Reveal Genetic Susceptibility to Chronic Inflammatory Intestinal Diseases and Pancreatic Ductal Adenocarcinoma Risk. Cancer Research, 2020, 80, 4004-4013.	0.4	5
209	Genome-wide Meta-analysis Identifies Novel Genes Associated with Recurrence and Progression in Non–muscle-invasive Bladder Cancer. European Urology Oncology, 2022, 5, 70-83.	2.6	5
210	Disinfection By-Products in Drinking Water and Bladder Cancer: Evaluation of Risk Modification by Common Genetic Polymorphisms in Two Case–Control Studies. Environmental Health Perspectives, 2022, 130, 57006.	2.8	5
211	Public health genomics and the challenges for epidemiology. European Journal of Public Health, 2011, 21, 5-6.	0.1	4
212	DoriTool: A Bioinformatics Integrative Tool for Post-Association Functional Annotation. Public Health Genomics, 2017, 20, 126-135.	0.6	4
213	Cancer Genomics and Public Health. Public Health Genomics, 2017, 20, 67-69.	0.6	3
214	Health Literacy: Read All about It …. Biomedicine Hub, 2017, 2, 1-4.	0.4	3
215	Incidence and Survival Trends of Pancreatic Cancer in Girona: Impact of the Change in Patient Care in the Last 25 Years. International Journal of Environmental Research and Public Health, 2020, 17, 9538.	1.2	3
216	Somatic Mutation Profiling in the Liquid Biopsy and Clinical Analysis of Hereditary and Familial Pancreatic Cancer Cases Reveals KRAS Negativity and a Longer Overall Survival. Cancers, 2021, 13, 1612.	1.7	3

#	Article	IF	CITATIONS
217	EU Pancreas: An Integrated European Platform for Pancreas Cancer Research - from Basic Science to Clinical and Public Health Interventions for a Rare Disease. Public Health Genomics, 2013, 16, 305-312.	0.6	2
218	Genomics in Primary and Secondary Prevention of Pancreatic Cancer. Public Health Genomics, 2017, 20, 92-99.	0.6	2
219	Response to: Variation of the age at onset of pancreatic cancer according to tobacco smoking and family history. International Journal of Epidemiology, 2018, 47, 1358-1359.	0.9	2
220	Integrative eQTL analysis of tumor and host omics data in individuals with bladder cancer. Genetic Epidemiology, 2017, 41, 567-573.	0.6	1
221	Perspectives on Data Integration in Human Complex Disease Analysis. Advances in Bioinformatics and Biomedical Engineering Book Series, 2015, , 284-322.	0.2	1
222	Editorial Comment on: FGFR3 Mutations Indicate Better Survival in Invasive Upper Urinary Tract and Bladder Tumours. European Urology, 2009, 55, 658.	0.9	0
223	An unusual suspect: an uncommon human-specific synonymous coding variant within the UGT1A6 gene explains a GWAS signal and protects against bladder cancer. Genome Biology, 2011, 12, .	3.8	0
224	A novel functional variant in 8q24 is associated with regulation of prostate stem cell antigen (PSCA) gene expression and bladder cancer risk. Genome Biology, 2011, 12, .	3.8	0
225	Public Health Genomics in Spain: The Status of a Non-Existing Reality. Public Health Genomics, 2012, 15, 313-321.	0.6	0
226	Genetic Testing, Genetic Variation, and Genetic Susceptibility. , 2018, , 629-649.		0
227	Author's reply to: Air pollution and incident bladder cancer: A risk assessment. International Journal of Cancer, 2019, 145, 3178-3178.	2.3	0
228	Risk factors for residual disease at re-TUR in a large cohort of T1G3 patients. Actas Urológicas Españolas (English Edition), 2021, 45, 473-478.	0.2	0
229	Perspectives on Data Integration in Human Complex Disease Analysis. , 2019, , 1826-1866.		0