
Juan Carlos Zuniga-Pflucker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8396369/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Monoallelic Heb/Tcf12 Deletion Reduces the Requirement for NOTCH1 Hyperactivation in T-Cell Acute Lymphoblastic Leukemia. Frontiers in Immunology, 2022, 13, 867443.	2.2	4
2	Thymic Microenvironment: Interactions Between Innate Immune Cells and Developing Thymocytes. Frontiers in Immunology, 2022, 13, 885280.	2.2	8
3	Realization of the T Lineage Program Involves GATA-3 Induction of Bcl11b and Repression of Cdkn2b Expression. Journal of Immunology, 2022, 209, 77-92.	0.4	1
4	The E protein-TCF1 axis controls γδTÂcell development and effector fate. Cell Reports, 2021, 34, 108716.	2.9	18
5	High-Oxygen Submersion Fetal Thymus Organ Cultures Enable FOXN1-Dependent and -Independent Support of T Lymphopoiesis. Frontiers in Immunology, 2021, 12, 652665.	2.2	5
6	Cutting Edge: TCR-β Selection Is Required at the CD4+CD8+ Stage of Human T Cell Development. Journal of Immunology, 2021, 206, 2271-2276.	0.4	5
7	Ontogenic timing, TÂcell receptor signal strength, and Notch signaling direct γδTÂcell functional differentiation inÂvivo. Cell Reports, 2021, 35, 109227.	2.9	8
8	DL4-μbeads induce T cell lineage differentiation from stem cells in a stromal cell-free system. Nature Communications, 2021, 12, 5023.	5.8	43
9	A 2020 View of Thymus Stromal Cells in T Cell Development. Journal of Immunology, 2021, 206, 249-256.	0.4	36
10	T Cell Development. , 2021, , .		0
11	Wendy Havran: Scientist, mentor, advocate. Immunological Reviews, 2020, 298, 289-291.	2.8	1
12	Thymic Engraftment by in vitro-Derived Progenitor T Cells in Young and Aged Mice. Frontiers in Immunology, 2020, 11, 1850.	2.2	9
13	E2A regulates neural ectoderm fate specification in human embryonic stem cells. Development (Cambridge), 2020, 147, .	1.2	8
14	NOTCH1 signaling establishes the medullary thymic epithelial cell progenitor pool during mouse fetal development. Development (Cambridge), 2020, 147, .	1.2	23
15	Chronic virus infection drives CD8 T cell-mediated thymic destruction and impaired negative selection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5420-5429.	3.3	23
16	RBPJ-dependent Notch signaling initiates the T cell program in a subset of thymus-seeding progenitors. Nature Immunology, 2019, 20, 1456-1468.	7.0	61
17	Notch and the pre-TCR coordinate thymocyte proliferation by induction of the SCF subunits Fbxl1 and Fbxl12. Nature Immunology, 2019, 20, 1381-1392.	7.0	26
18	Close Quarters Can Be a Good Fit for Stem Cells to Become T Cells. Cell Stem Cell, 2019, 24, 345-347.	5.2	1

#	Article	IF	CITATIONS
19	T-Cell Development: From T-Lineage Specification to Intrathymic Maturation. , 2019, , 67-115.		4
20	Generation and function of progenitor T cells from StemRegenin-1–expanded CD34+ human hematopoietic progenitor cells. Blood Advances, 2019, 3, 2934-2948.	2.5	14
21	In vitro â€generated MART â€1â€specific CD 8 T cells display a broader Tâ€cell receptor repertoire than exÂvivo naÃīve and tumorâ€infiltrating lymphocytes. Immunology and Cell Biology, 2019, 97, 427-434.	1.0	0
22	Genetic engineering in primary human B cells with CRISPR-Cas9 ribonucleoproteins. Journal of Immunological Methods, 2018, 457, 33-40.	0.6	39
23	Role of a selecting ligand in shaping the murine γδ-TCR repertoire. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1889-1894.	3.3	40
24	Robust Progenitor T-Cell Production From Human Hematopoietic Progenitor Cell Expanded with Stemregenin-1. Biology of Blood and Marrow Transplantation, 2018, 24, S425-S426.	2.0	0
25	Generation and molecular recognition of melanoma-associated antigen-specific human $\hat{I}^3\hat{I}$ T cells. Science Immunology, 2018, 3, .	5.6	43
26	Peroxisome Proliferator-Activated Receptor–δ Supports the Metabolic Requirements of Cell Growth in TCRβ-Selected Thymocytes and Peripheral CD4+ T Cells. Journal of Immunology, 2018, 201, 2664-2682.	0.4	13
27	Integration of Tâ€cell receptor, Notch and cytokine signals programs mouse γδTâ€cell effector differentiation. Immunology and Cell Biology, 2018, 96, 994-1007.	1.0	21
28	Producing proT cells to promote immunotherapies. International Immunology, 2018, 30, 541-550.	1.8	12
29	The ion channel TRPM7 is required for B cell lymphopoiesis. Science Signaling, 2018, 11, .	1.6	13
30	<i>EXTL3</i> mutations cause skeletal dysplasia, immune deficiency, and developmental delay. Journal of Experimental Medicine, 2017, 214, 623-637.	4.2	76
31	Progenitor T-cell differentiation from hematopoietic stem cells using Delta-like-4 and VCAM-1. Nature Methods, 2017, 14, 531-538.	9.0	102
32	Engineering the haemogenic niche mitigates endogenous inhibitory signals and controls pluripotent stem cell-derived blood emergence. Nature Communications, 2017, 8, 15380.	5.8	21
33	A key role for ILâ€7R in the generation of microenvironments required for thymic dendritic cells. Immunology and Cell Biology, 2017, 95, 933-942.	1.0	4
34	Notch Shapes the Innate Immunophenotype in Breast Cancer. Cancer Discovery, 2017, 7, 1320-1335.	7.7	98
35	Targeted Disruption of TCF12 Reveals HEB as Essential in Human Mesodermal Specification and Hematopoiesis. Stem Cell Reports, 2017, 9, 779-795.	2.3	25
36	HEB is required for the specification of fetal IL-17-producing γδT cells. Nature Communications, 2017, 8, 2004.	5.8	45

#	Article	IF	CITATIONS
37	Control of HIV Infection InÂVivo Using Gene Therapy with a Secreted Entry Inhibitor. Molecular Therapy - Nucleic Acids, 2017, 9, 132-144.	2.3	15
38	T cell progenitor therapy–facilitated thymopoiesis depends upon thymic input and continued thymic microenvironment interaction. JCI Insight, 2017, 2, .	2.3	18
39	Modeling altered T-cell development with induced pluripotent stem cells from patients with RAG1-dependent immune deficiencies. Blood, 2016, 128, 783-793.	0.6	45
40	T Cell Genesis: In Vitro Veritas Est ?. Trends in Immunology, 2016, 37, 889-901.	2.9	22
41	Artificial Thymus: Recreating Microenvironmental Cues to Direct T Cell Differentiation and Thymic Regeneration. , 2016, , 95-120.		2
42	Induction of T Cell Development In Vitro by Delta-Like (Dll)-Expressing Stromal Cells. Methods in Molecular Biology, 2016, 1323, 159-167.	0.4	4
43	In Vitro T-Cell Generation From Adult, Embryonic, and Induced Pluripotent Stem Cells: Many Roads to One Destination. Stem Cells, 2015, 33, 3174-3180.	1.4	11
44	Gamma delta T-cell differentiation and effector function programming, TCR signal strength, when and how much?. Cellular Immunology, 2015, 296, 70-75.	1.4	35
45	Hematopoiesis: from start to immune reconstitution potential. Stem Cell Research and Therapy, 2015, 6, 52.	2.4	6
46	T cell development runs marrow deep. Journal of Experimental Medicine, 2015, 212, 599-600.	4.2	0
47	An in vitro model of innate lymphoid cell function and differentiation. Mucosal Immunology, 2015, 8, 340-351.	2.7	45
48	Derivation of T Cells In Vitro from Mouse Embryonic Stem Cells. Journal of Visualized Experiments, 2014, , e52119.	0.2	1
49	Noncanonical Mode of ERK Action Controls Alternative $\hat{I}\pm\hat{I}^2$ and $\hat{I}^3\hat{I}$ T Cell Lineage Fates. Immunity, 2014, 41, 934-946.	6.6	28
50	Leukocyte Infiltration and Activation of the NLRP3 Inflammasome in White Adipose Tissue Following Thermal Injury*. Critical Care Medicine, 2014, 42, 1357-1364.	0.4	55
51	The TCR ligand-inducible expression of CD73 marks Î ³ δ lineage commitment and a metastable intermediate in effector specification. Journal of Experimental Medicine, 2014, 211, 329-343.	4.2	75
52	Enforcement of γÎ′-lineage commitment by the pre–T-cell receptor in precursors with weak γÎ′-TCR signals. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5658-5663.	3.3	35
53	Adapting in vitro embryonic stem cell differentiation to the study of locus control regions. Journal of Immunological Methods, 2014, 407, 135-145.	0.6	1
54	Primary Immune Deficiency Treatment Consortium (PIDTC) report. Journal of Allergy and Clinical Immunology, 2014, 133, 335-347.e11.	1.5	65

#	Article	IF	CITATIONS
55	Dedicated mTEC Progenitors Stay True, Even into Adulthood. Immunity, 2014, 41, 675-676.	6.6	2
56	Notch signals are required for in vitro but not in vivo maintenance of human hematopoietic stem cells and delay the appearance of multipotent progenitors. Blood, 2014, 123, 1167-1177.	0.6	37
57	A Monoclonal Antibody Against the Extracellular Domain of Mouse and Human Epithelial V-like Antigen 1 Reveals a Restricted Expression Pattern Among CD4- CD8- Thymocytes. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2014, 33, 305-311.	0.8	4
58	An Overview of the Intrathymic Intricacies of T Cell Development. Journal of Immunology, 2014, 192, 4017-4023.	0.4	231
59	The orphan nuclear receptor Ear-2 (Nr2f6) is a novel negative regulator of T cell development. Experimental Hematology, 2014, 42, 46-58.	0.2	12
60	FOXN1GFP/w Reporter hESCs Enable Identification of Integrin-β4, HLA-DR, and EpCAM as Markers of Human PSC-Derived FOXN1+ Thymic Epithelial Progenitors. Stem Cell Reports, 2014, 2, 925-937.	2.3	42
61	GATA-3 regulates the self-renewal of long-term hematopoietic stem cells. Nature Immunology, 2013, 14, 1037-1044.	7.0	90
62	Induction of T-cell development by Delta-like 4-expressing fibroblasts. International Immunology, 2013, 25, 601-611.	1.8	47
63	Generation, Isolation, and Engraftment of In Vitro-Derived Human T Cell Progenitors. Methods in Molecular Biology, 2013, 946, 103-113.	0.4	6
64	Cellular and Molecular Requirements for the Selection of In Vitro–Generated CD8 T Cells Reveal a Role for Notch. Journal of Immunology, 2013, 191, 1704-1715.	0.4	17
65	Directed Differentiation of Embryonic Stem Cells to the T-Lymphocyte Lineage. Methods in Molecular Biology, 2013, 1029, 119-128.	0.4	4
66	Removal of myeloid cytokines from the cellular environment enhances T-cell development in vitro. International Immunology, 2013, 25, 589-599.	1.8	5
67	Complete TCR-α Gene Locus Control Region Activity in T Cells Derived In Vitro from Embryonic Stem Cells. Journal of Immunology, 2013, 191, 472-479.	0.4	6
68	Human proT-cells generated in vitro facilitate hematopoietic stem cell-derived T-lymphopoiesis in vivo and restore thymic architecture. Blood, 2013, 122, 4210-4219.	0.6	62
69	Neurokinin-1 Receptor Signalling Impacts Bone Marrow Repopulation Efficiency. PLoS ONE, 2013, 8, e58787.	1.1	4
70	T-Cell Development. , 2013, , 47-67.		0
71	Dynamics of Human Prothymocytes and Xenogeneic Thymopoiesis in Hematopoietic Stem Cell-Engrafted Nonobese Diabetic-SCID/IL-2rγnull Mice. Journal of Immunology, 2012, 189, 1648-1660.	0.4	16
72	Comparative and Functional Evaluation of In Vitro Generated to Ex Vivo CD8 T Cells. Journal of Immunology, 2012, 189, 3411-3420.	0.4	19

#	Article	IF	CITATIONS
73	Transcriptional priming of intrathymic precursors for dendritic cell development. Development (Cambridge), 2012, 139, 373-384.	1.2	20
74	HES1 opposes a PTEN-dependent check on survival, differentiation, and proliferation of TCRÎ ² -selected mouse thymocytes. Blood, 2012, 120, 1439-1448.	0.6	109
75	Role of Recycling, Mindbomb1 Association, and Exclusion from Lipid Rafts of Delta-like 4 for Effective Notch Signaling To Drive T Cell Development. Journal of Immunology, 2012, 189, 5797-5808.	0.4	12
76	When Three Negatives Made a Positive Influence in Defining Four Early Steps in T Cell Development. Journal of Immunology, 2012, 189, 4201-4202.	0.4	4
77	Notch Activation by the Metalloproteinase ADAM17 Regulates Myeloproliferation and Atopic Barrier Immunity by Suppressing Epithelial Cytokine Synthesis. Immunity, 2012, 36, 105-119.	6.6	108
78	Notch Receptor-Ligand Interactions During T Cell Development, a Ligand Endocytosis-Driven Mechanism. Current Topics in Microbiology and Immunology, 2012, 360, 19-46.	0.7	9
79	IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature, 2012, 488, 656-659.	13.7	474
80	The role of induced pluripotent stem cells in research and therapy of primary immunodeficiencies. Current Opinion in Immunology, 2012, 24, 617-624.	2.4	12
81	T Lymphocyte Potential Marks the Emergence of Definitive Hematopoietic Progenitors in Human Pluripotent Stem Cell Differentiation Cultures. Cell Reports, 2012, 2, 1722-1735.	2.9	341
82	On becoming a T cell, a convergence of factors kick it up a Notch along the way. Seminars in Immunology, 2011, 23, 350-359.	2.7	52
83	A human thymic epithelial cell culture system for the promotion of lymphopoiesis from hematopoietic stem cells. Experimental Hematology, 2011, 39, 570-579.	0.2	24
84	Human CD8 T cells generated in vitro from hematopoietic stem cells are functionally mature. BMC Immunology, 2011, 12, 22.	0.9	39
85	Thymus-bound: the many features of T cell progenitors. Frontiers in Bioscience - Scholar, 2011, S3, 961.	0.8	10
86	Key players for T-cell regeneration. Current Opinion in Hematology, 2010, 17, 327-332.	1.2	20
87	gp96, an endoplasmic reticulum master chaperone for integrins and Toll-like receptors, selectively regulates early T and B lymphopoiesis. Blood, 2010, 115, 2380-2390.	0.6	109
88	TGFâ€Î² affects development and differentiation of human natural killer cell subsets. European Journal of Immunology, 2010, 40, 2289-2295.	1.6	95
89	Determining $\hat{I}^{\hat{J}}$ versus $\hat{I} \pm \hat{I}^2$ T cell development. Nature Reviews Immunology, 2010, 10, 657-663.	10.6	127
90	Direct Comparison of Dll1- and Dll4-Mediated Notch Activation Levels Shows Differential Lymphomyeloid Lineage Commitment Outcomes. Journal of Immunology, 2010, 185, 867-876.	0.4	142

#	Article	IF	CITATIONS
91	A Notch Ligand, Delta-Like 1 Functions As an Adhesion Molecule for Mast Cells. Journal of Immunology, 2010, 185, 3905-3912.	0.4	33
92	Correction: Direct Comparison of Dll1- and Dll4-Mediated Notch Activation Levels Shows Differential Lymphomyeloid Lineage Commitment Outcomes. Journal of Immunology, 2010, 185, 3777-3778.	0.4	0
93	Î ³ δand αβ T cell lineage choice: Resolution by a stronger sense of being. Seminars in Immunology, 2010, 22, 228-236.	2.7	28
94	Positive selection of T cells, an in vitro view. Seminars in Immunology, 2010, 22, 276-286.	2.7	24
95	The Original Intrathymic Progenitor from Which T Cells Originate. Journal of Immunology, 2009, 183, 3-4.	0.4	7
96	The OP9-DL1 System: Generation of T-Lymphocytes from Embryonic or Hematopoietic Stem Cells In Vitro. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5156.	0.2	144
97	Marked Induction of the Helix-Loop-Helix Protein Id3 Promotes the Î ³ δT Cell Fate and Renders Their Functional Maturation Notch Independent. Immunity, 2009, 31, 565-575.	6.6	136
98	Characterization in vitro and engraftment potential in vivo of human progenitor T cells generated from hematopoietic stem cells. Blood, 2009, 114, 972-982.	0.6	125
99	Tumor immunotherapy across MHC barriers using allogeneic T-cell precursors. Nature Biotechnology, 2008, 26, 453-461.	9.4	110
100	In Vitro Human T Cell Development Directed by Notch–Ligand Interactions. Methods in Molecular Biology, 2008, 430, 135-142.	0.4	19
101	Beyond tumor necrosis factor receptor: TRADD signaling in toll-like receptors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12429-12434.	3.3	100
102	Differences in lymphocyte developmental potential between human embryonic stem cell and umbilical cord blood–derived hematopoietic progenitor cells. Blood, 2008, 112, 2730-2737.	0.6	62
103	Constitutive Notch signalling promotes CD4-CD8- thymocyte differentiation in the absence of the pre-TCR complex, by mimicking pre-TCR signals. International Immunology, 2007, 19, 1421-1430.	1.8	28
104	Early Growth Response 1 and NF-ATc1 Act in Concert to Promote Thymocyte Development beyond the β-Selection Checkpoint. Journal of Immunology, 2007, 179, 4694-4703.	0.4	23
105	In Vitro Models of Human T Cell Development: Dishing Out Progenitor T Cells. Current Immunology Reviews, 2007, 3, 57-75.	1.2	3
106	Generation of pro-T cells in vitro: potential for immune reconstitution. Seminars in Immunology, 2007, 19, 341-349.	2.7	13
107	Giving T cells a chance to come back. Seminars in Immunology, 2007, 19, 279.	2.7	6
108	Chromosome Transfer Activates and Delineates a Locus Control Region for Perforin. Immunity, 2007, 26, 29-41.	6.6	38

#	Article	IF	CITATIONS
109	Commitment and Developmental Potential of Extrathymic and Intrathymic T Cell Precursors: Plenty to Choose from. Immunity, 2007, 26, 678-689.	6.6	244
110	Zoned Out: Functional Mapping of Stromal Signaling Microenvironments in the Thymus. Annual Review of Immunology, 2007, 25, 649-679.	9.5	415
111	The Thymus as an Inductive Site for T Lymphopoiesis. Annual Review of Cell and Developmental Biology, 2007, 23, 463-493.	4.0	193
112	CD8+ T cells are kept in tune by modulating IL-7 responsiveness. Nature Immunology, 2007, 8, 1027-1028.	7.0	3
113	Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nature Medicine, 2007, 13, 1203-1210.	15.2	804
114	T-cell potential and development in vitro: the OP9-DL1 approach. Current Opinion in Immunology, 2007, 19, 163-168.	2.4	71
115	Generation of Immunocompetent T Cells from Embryonic Stem Cells. Methods in Molecular Biology, 2007, 380, 73-81.	0.4	7
116	In Vitro Systems for the Study of T Cell Development: Fetal Thymus Organ Culture and OP9â€ĐL1 Cell Coculture. Current Protocols in Immunology, 2006, 71, Unit 3.18.	3.6	18
117	Stage-Specific and Differential Notch Dependency at the αβ and γδT Lineage Bifurcation. Immunity, 2006, 25, 105-116.	6.6	208
118	Pre-T Cell Receptor's clashing Signals: "Should I Stay or Should I Go― Immunity, 2006, 24, 669-670.	6.6	2
119	Regulation of Early T-Cell Development in the Thymus. , 2006, , 89-108.		0
120	T-cell development, doing it in a dish. Immunological Reviews, 2006, 209, 95-102.	2.8	78
121	Early hematopoietic lineage restrictions directed by Ikaros. Nature Immunology, 2006, 7, 382-391.	7.0	272
122	Adoptive transfer of T-cell precursors enhances T-cell reconstitution after allogeneic hematopoietic stem cell transplantation. Nature Medicine, 2006, 12, 1039-1047.	15.2	173
123	A Survival Guide to Early T Cell Development. Immunologic Research, 2006, 34, 117-132.	1.3	43
124	In Vitro Generation of T Lymphocytes From Embryonic Stem Cells. , 2006, 330, 113-122.		12
125	Differential synergy of Notch and T cell receptor signaling determines αβ versus γδlineage fate. Journal of Experimental Medicine, 2006, 203, 1579-1590.	4.2	101
126	The Basic Helix-Loop-Helix Transcription Factor HEBAlt Is Expressed in Pro-T Cells and Enhances the Generation of T Cell Precursors. Journal of Immunology, 2006, 177, 109-119.	0.4	65

#	Article	IF	CITATIONS
127	Cutting Edge: Three-Dimensional Architecture of the Thymus Is Required to Maintain Delta-Like Expression Necessary for Inducing T Cell Development. Journal of Immunology, 2006, 176, 730-734.	0.4	97
128	A Natural Structural Variant of the Mouse TCR β-Chain Displays Intrinsic Receptor Function and Antigen Specificity. Journal of Immunology, 2006, 177, 8587-8594.	0.4	0
129	Notch Signaling Requires GATA-2 to Inhibit Myelopoiesis from Embryonic Stem Cells and Primary Hemopoietic Progenitors. Journal of Immunology, 2006, 176, 5267-5275.	0.4	59
130	In Vitro Generation of Lymphocytes From Embryonic Stem Cells. , 2005, 290, 135-148.		9
131	Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro. Blood, 2005, 105, 1431-1439.	0.6	266
132	T-cell generation by lymph node resident progenitor cells. Blood, 2005, 106, 193-200.	0.6	41
133	Notch promotes survival of pre–T cells at the β-selection checkpoint by regulating cellular metabolism. Nature Immunology, 2005, 6, 881-888.	7.0	437
134	The BTG/TOB family protein TIS21 regulates stage-specific proliferation of developing thymocytes. European Journal of Immunology, 2005, 35, 3030-3042.	1.6	24
135	Unraveling the origin of lymphocyte progenitors. European Journal of Immunology, 2005, 35, 2016-2018.	1.6	6
136	Delayed, asynchronous, and reversible T-lineage specification induced by Notch/Delta signaling. Genes and Development, 2005, 19, 965-978.	2.7	141
137	Propensity of Adult Lymphoid Progenitors to Progress to DN2/3 Stage Thymocytes with Notch Receptor Ligation. Journal of Immunology, 2005, 175, 4858-4865.	0.4	46
138	Thymus-Derived Signals Regulate Early T-Cell Development. Critical Reviews in Immunology, 2005, 25, 141-160.	1.0	23
139	Survivin Loss in Thymocytes Triggers p53-mediated Growth Arrest and p53-independent Cell Death. Journal of Experimental Medicine, 2004, 199, 399-410.	4.2	118
140	Maintenance of T Cell Specification and Differentiation Requires Recurrent Notch Receptor–Ligand Interactions. Journal of Experimental Medicine, 2004, 200, 469-479.	4.2	302
141	Cyclic Adenosine 5′-Monophosphate Response Element Binding Protein Plays a Central Role in Mediating Proliferation and Differentiation Downstream of the Pre-TCR Complex in Developing Thymocytes. Journal of Immunology, 2004, 173, 1802-1810.	0.4	18
142	Obligatory Role for Cooperative Signaling by Pre-TCR and Notch during Thymocyte Differentiation. Journal of Immunology, 2004, 172, 5230-5239.	0.4	234
143	Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro. Nature Immunology, 2004, 5, 410-417.	7.0	336
144	T-cell development made simple. Nature Reviews Immunology, 2004, 4, 67-72.	10.6	246

#	Article	IF	CITATIONS
145	Heterogeneity among DN1 Prothymocytes Reveals Multiple Progenitors with Different Capacities to Generate T Cell and Non-T Cell Lineages. Immunity, 2004, 20, 735-745.	6.6	360
146	Identification of Upstream cis-Acting Regulatory Elements Controlling Lineage-specific Expression of the Mouse NK Cell Activation Receptor, NKR-P1C. Journal of Biological Chemistry, 2003, 278, 31909-31917.	1.6	10
147	Low Activation Threshold As a Mechanism for Ligand-Independent Signaling in Pre-T Cells. Journal of Immunology, 2003, 170, 2853-2861.	0.4	53
148	The role of nuclear factor-ÂB essential modulator (NEMO) in B cell development and survival. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1203-1208.	3.3	35
149	Development of Lymphoid Lineages from Embryonic Stem Cells In Vitro. Methods in Enzymology, 2003, 365, 158-169.	0.4	16
150	In vitro generation of T lymphocytes from embryonic stem cell–derived prehematopoietic progenitors. Blood, 2003, 102, 1649-1653.	0.6	70
151	Regulation of thymocyte differentiation: pre-TCR signals and β-selection. Seminars in Immunology, 2002, 14, 311-323.	2.7	189
152	Induction of T Cell Development from Hematopoietic Progenitor Cells by Delta-like-1 In Vitro. Immunity, 2002, 17, 749-756.	6.6	1,003
153	Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature, 2001, 410, 549-554.	13.7	1,212
154	The Stress Kinase Mitogen-Activated Protein Kinase Kinase (Mkk)7 Is a Negative Regulator of Antigen Receptor and Growth Factor Receptor–Induced Proliferation in Hematopoietic Cells. Journal of Experimental Medicine, 2001, 194, 757-768.	4.2	56
155	Transfection and Transcription of Genes in Developing Thymocytes. , 2000, 134, 55-62.		4
156	Branching out to gain control: how the pre-TCR is linked to multiple functions. Trends in Immunology, 2000, 21, 637-644.	7.5	105
157	InVivoDetection of Intracellular Signaling Pathways in Developing Thymocytes. Autoimmunity, 2000, 8, 31-45.	0.6	3
158	Competitive Displacement of pTα by TCR-α During TCR Assembly Prevents Surface Coexpression of Pre-TCR and αβ TCR. Journal of Immunology, 2000, 165, 5566-5572.	0.4	40
159	Clonal Characterization of a Bipotent T Cell and NK Cell Progenitor in the Mouse Fetal Thymus. Journal of Immunology, 2000, 164, 1730-1733.	0.4	81
160	Extracellular Signal–Regulated Kinase (Erk) Activation by the Pre-T Cell Receptor in Developing Thymocytes in Vivo. Journal of Experimental Medicine, 1999, 190, 1647-1656.	4.2	41
161	Requirement for the Thymus in $\hat{I}\pm\hat{I}^2$ T Lymphocyte Lineage Commitment. Immunity, 1998, 9, 187-197.	6.6	87
162	Identification of a Novel Developmental Stage Marking Lineage Commitment of Progenitor Thymocytes. Journal of Experimental Medicine, 1997, 186, 173-182.	4.2	128

#	Article	IF	CITATIONS
163	Synergy between T Cell Receptor and Fas (CD95/APO-1) Signaling in Mouse Thymocyte Death. Cellular Immunology, 1996, 169, 99-106.	1.4	18
164	Regulation of thymocyte development from immature progenitors. Current Opinion in Immunology, 1996, 8, 215-224.	2.4	155
165	Transcriptional Control of IL-2 and IL-4 in T Cells of Young and Old Mice. Cellular Immunology, 1995, 164, 170-175.	1.4	18
166	Parameters controlling the programmed death of mature mouse T lymphocytes in high-dose suppression. Cellular Immunology, 1995, 160, 71-78.	1.4	33
167	Generation of Immunocompetent T Cells from Embryonic Stem Cells. , 0, , 73-82.		0
168	Thymus Reconstitution in Young and Aged Mice Is Facilitated by In Vitro-Generated Progenitor T Cells. Frontiers in Immunology, 0, 13, .	2.2	6