
Mark Connor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8396306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How opioids inhibit GABA-mediated neurotransmission. Nature, 1997, 390, 611-614.	13.7	468
2	Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity. Nature Communications, 2017, 8, 13958.	5.8	265
3	Opioids: cellular mechanisms of tolerance and physical dependence. Current Opinion in Pharmacology, 2005, 5, 60-68.	1.7	244
4	The Concise Guide to PHARMACOLOGY 2015/16: Overview. British Journal of Pharmacology, 2015, 172, 5729-5743.	2.7	220
5	Low intrinsic efficacy for G protein activation can explain the improved side effect profiles of new opioid agonists. Science Signaling, 2020, 13, .	1.6	219
6	Pharmacology of Valinate and <i>tert</i> -Leucinate Synthetic Cannabinoids 5F-AMBICA, 5F-AMB, 5F-ADB, AMB-FUBINACA, MDMB-FUBINACA, MDMB-CHMICA, and Their Analogues. ACS Chemical Neuroscience, 2016, 7, 1241-1254.	1.7	214
7	OPIOID RECEPTOR SIGNALLING MECHANISMS. Clinical and Experimental Pharmacology and Physiology, 1999, 26, 493-499.	0.9	207
8	Nociceptin receptor coupling to a potassium conductance in rat locus coeruleus neurones <i>in vitro</i> . British Journal of Pharmacology, 1996, 119, 1614-1618.	2.7	206
9	Pharmacology of Indole and Indazole Synthetic Cannabinoid Designer Drugs AB-FUBINACA, ADB-FUBINACA, AB-PINACA, ADB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA, ADBICA, and 5F-ADBICA. ACS Chemical Neuroscience, 2015, 6, 1546-1559.	1.7	202
10	Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal disulfide bridge. Nature Structural Biology, 2000, 7, 505-513.	9.7	194
11	The effect of nociceptin on Ca ²⁺ channel current and intracellular Ca ²⁺ in the SH‣Y5Y human neuroblastoma cell line. British Journal of Pharmacology, 1996, 118, 205-207.	2.7	193
12	The structure of a novel insecticidal neurotoxin, ω-atracotoxin-HV1, from the venom of an Australian funnel web spider. Nature Structural Biology, 1997, 4, 559-566.	9.7	172
13	Gingerols: a novel class of vanilloid receptor (VR1) agonists. British Journal of Pharmacology, 2002, 137, 793-798.	2.7	171
14	Inhibition of Recombinant Human T-type Calcium Channels by Δ9-Tetrahydrocannabinol and Cannabidiol. Journal of Biological Chemistry, 2008, 283, 16124-16134.	1.6	168
15	Effects of Bioisosteric Fluorine in Synthetic Cannabinoid Designer Drugs JWH-018, AM-2201, UR-144, XLR-11, PB-22, 5F-PB-22, APICA, and STS-135. ACS Chemical Neuroscience, 2015, 6, 1445-1458.	1.7	167
16	Cannabinoid CB ₁ and CB ₂ Receptor Signaling and Bias. Cannabis and Cannabinoid Research, 2017, 2, 48-60.	1.5	165
17	The Concise Guide to PHARMACOLOGY 2013/14: Overview. British Journal of Pharmacology, 2013, 170, 1449-1458.	2.7	153
18	Enhanced Opioid Efficacy in Opioid Dependence Is Caused by an Altered Signal Transduction Pathway. Journal of Neuroscience, 1998, 18, 10269-10276.	1.7	150

Mark Connor

#	Article	IF	CITATIONS
19	Capsaicin activation of glutamatergic synaptic transmission in the rat locus coeruleus In vitro. Journal of Physiology, 2002, 543, 531-540.	1.3	146
20	Opioid Agonists Have Different Efficacy Profiles for G Protein Activation, Rapid Desensitization, and Endocytosis of Mu-opioid Receptors. Journal of Biological Chemistry, 2003, 278, 18776-18784.	1.6	142
21	Modulation of Ca2+channel currents of acutely dissociated rat periaqueductal grey neurons. Journal of Physiology, 1998, 509, 47-58.	1.3	108
22	μ -Opioid receptor desensitization: Is morphine different?. British Journal of Pharmacology, 2004, 143, 685-696.	2.7	99
23	Realâ€ŧime characterization of cannabinoid receptor 1 (<scp>CB</scp> ₁) allosteric modulators reveals novel mechanism of action. British Journal of Pharmacology, 2013, 170, 893-907.	2.7	97
24	Accelerating the search for the missing proteins in the human proteome. Nature Communications, 2017, 8, 14271.	5.8	86
25	Absence of Entourage: Terpenoids Commonly Found in <i>Cannabis sativa</i> Do Not Modulate the Functional Activity of Δ ⁹ -THC at Human CB ₁ and CB ₂ Receptors. Cannabis and Cannabinoid Research, 2019, 4, 165-176.	1.5	84
26	The Synthesis and Pharmacological Evaluation of Adamantane-Derived Indoles: Cannabimimetic Drugs of Abuse. ACS Chemical Neuroscience, 2013, 4, 1081-1092.	1.7	80
27	Discovery and Structure of a Potent and Highly Specific Blocker of Insect Calcium Channels. Journal of Biological Chemistry, 2001, 276, 40306-40312.	1.6	79
28	Nociceptin inhibits calcium channel currents in a subpopulation of small nociceptive trigeminal ganglion neurons in mouse. Journal of Physiology, 2001, 536, 35-47.	1.3	79
29	Cellular Actions Of Opioids And Other Analgesics: Implications For Synergism In Pain Relief. Clinical and Experimental Pharmacology and Physiology, 2000, 27, 520-523.	0.9	76
30	<i>N</i> â€Acyl amino acids and <i>N</i> â€acyl neurotransmitter conjugates: neuromodulators and probes for new drug targets. British Journal of Pharmacology, 2010, 160, 1857-1871.	2.7	76
31	The Chemistry and Pharmacology of Synthetic Cannabinoid Receptor Agonists as New Psychoactive Substances: Origins. Handbook of Experimental Pharmacology, 2018, 252, 165-190.	0.9	73
32	Opioid tolerance in periaqueductal gray neurons isolated from mice chronically treated with morphine. British Journal of Pharmacology, 2005, 146, 68-76.	2.7	72
33	Anandamide is a partial agonist at native vanilloid receptors in acutely isolated mouse trigeminal sensory neurons. British Journal of Pharmacology, 2002, 137, 421-428.	2.7	68
34	Cannabichromene is a cannabinoid CB ₂ receptor agonist. British Journal of Pharmacology, 2019, 176, 4537-4547.	2.7	68
35	μ-opioid receptor modulation of calcium channel current in periaqueductal grey neurons from C57B16/J mice and mutant mice lacking MOR-1. British Journal of Pharmacology, 1999, 126, 1553-1558.	2.7	65
36	Inhibition of human recombinant Tâ€ŧype calcium channels by the endocannabinoid <i>N</i> â€arachidonoyl dopamine. British Journal of Pharmacology, 2009, 156, 740-750.	2.7	65

#	Article	IF	CITATIONS
37	The Chemistry and Pharmacology of Synthetic Cannabinoid Receptor Agonist New Psychoactive Substances: Evolution. Handbook of Experimental Pharmacology, 2018, 252, 191-226.	0.9	64
38	A Continuous, Fluorescence-based Assay of µ-Opioid Receptor Activation in AtT-20 Cells. Journal of Biomolecular Screening, 2013, 18, 269-276.	2.6	61
39	Î'―and μâ€opioid receptor mobilization of intracellular calcium in SH‣Y5Y human neuroblastoma cells. British Journal of Pharmacology, 1996, 117, 333-340.	2.7	58
40	Isolation and pharmacological characterisation of δ-atracotoxin-Hv1b, a vertebrate-selective sodium channel toxin. FEBS Letters, 2000, 470, 293-299.	1.3	56
41	Dark Classics in Chemical Neuroscience: Δ ⁹ -Tetrahydrocannabinol. ACS Chemical Neuroscience, 2019, 10, 2160-2175.	1.7	55
42	Trigeminal ganglion neuron subtypeâ€specific alterations of Ca _V 2.1 calcium current and excitability in aâ€, <i>Cacna1a</i> â€,mouse model of migraine. Journal of Physiology, 2011, 589, 5879-5895.	1.3	53
43	Pharmacology of Cumyl-Carboxamide Synthetic Cannabinoid New Psychoactive Substances (NPS) CUMYL-BICA, CUMYL-PICA, CUMYL-5F-PICA, CUMYL-5F-PINACA, and Their Analogues. ACS Chemical Neuroscience, 2017, 8, 2159-2167.	1.7	53
44	TRPV1 Antagonists as a Potential Treatment for Hyperalgesia. Recent Patents on CNS Drug Discovery, 2006, 1, 65-76.	0.9	52
45	Actions of nociceptin/orphanin FQ and other prepronociceptin products on rat rostral ventromedial medulla neurons in vitro. Journal of Physiology, 2001, 534, 849-859.	1.3	51
46	Contrasting Phenotypes of Putative Proprioceptive and Nociceptive Trigeminal Neurons Innervating Jaw Muscle in Rat. Molecular Pain, 2005, 1, 1744-8069-1-31.	1.0	47
47	Isolation of a funnel-web spider polypeptide with homology to mamba intestinal toxin 1 and the embryonic head inducer Dickkopf-1. Toxicon, 2000, 38, 429-442.	0.8	46
48	In vitro determination of the efficacy of illicit synthetic cannabinoids at CB ₁ receptors. British Journal of Pharmacology, 2019, 176, 4653-4665.	2.7	46
49	Synthesis and pharmacology of new psychoactive substance 5F UMYLâ€P7AICA, a scaffold―hopping analog of synthetic cannabinoid receptor agonists 5F UMYLâ€PICA and 5F UMYLâ€PINACA. Drug Testing and Analysis, 2019, 11, 279-291.	1.6	45
50	δ-Atracotoxins from Australian Funnel-web Spiders Compete with Scorpion α-Toxin Binding but Differentially Modulate Alkaloid Toxin Activation of Voltage-gated Sodium Channels. Journal of Biological Chemistry, 1998, 273, 27076-27083.	1.6	44
51	Synthesis and Pharmacological Profiling of the Metabolites of Synthetic Cannabinoid Drugs APICA, STS-135, ADB-PINACA, and 5F-ADB-PINACA. ACS Chemical Neuroscience, 2017, 8, 1673-1680.	1.7	42
52	Lack of functional expression of NMDA receptors in PC12 cells. NeuroToxicology, 2007, 28, 876-885.	1.4	40
53	Nociceptin, Phe1 i̇̀-nociceptin1-13 , nocistatin and prepronociceptin154-181 effects on calcium channel currents and a potassium current in rat locus coeruleus in vitro. British Journal of Pharmacology, 1999, 128, 1779-1787.	2.7	39
54	The Role of Opioid Receptor Phosphorylation and Trafficking in Adaptations to Persistent Opioid Treatment. NeuroSignals, 2005, 14, 290-302.	0.5	39

#	Article	IF	CITATIONS
55	Continued morphine modulation of calcium channel currents in acutely isolated locus coeruleus neurons from morphine-dependent rats. British Journal of Pharmacology, 1999, 128, 1561-1569.	2.7	38
56	Terpenoids Commonly Found in <i>Cannabis sativa</i> Do Not Modulate the Actions of Phytocannabinoids or Endocannabinoids on TRPA1 and TRPV1 Channels. Cannabis and Cannabinoid Research, 2020, 5, 305-317.	1.5	38
57	Sumatriptan Inhibits Synaptic Transmission in the Rat Midbrain Periaqueductal Grey. Molecular Pain, 2008, 4, 1744-8069-4-54.	1.0	37
58	Prostaglandin E2inhibits calcium current in two subâ€populations of acutely isolated mouse trigeminal sensory neurons. Journal of Physiology, 2002, 539, 433-444.	1.3	35
59	The 2-alkyl-2H-indazole regioisomers of synthetic cannabinoids AB-CHMINACA, AB-FUBINACA, AB-PINACA, and 5F-AB-PINACA are possible manufacturing impurities with cannabimimetic activities. Forensic Toxicology, 2016, 34, 286-303.	1.4	35
60	CUMYL-4CN-BINACA Is an Efficacious and Potent Pro-Convulsant Synthetic Cannabinoid Receptor Agonist. Frontiers in Pharmacology, 2019, 10, 595.	1.6	32
61	Neuropeptide Y Y2 receptor and somatostatin sst2 receptor coupling to mobilization of intracellular calcium in SH-SY5Y human neuroblastoma cells. British Journal of Pharmacology, 1997, 120, 455-463.	2.7	29
62	High-resolution solution structure of gurmarin, a sweet-taste-suppressing plant polypeptide. FEBS Journal, 1999, 264, 525-533.	0.2	29
63	βâ€Arrestinâ€2 knockout prevents development of cellular μâ€opioid receptor tolerance but does not affect opioidâ€withdrawalâ€related adaptations in single <scp>PAG</scp> neurons. British Journal of Pharmacology, 2015, 172, 492-500.	2.7	29
64	Ligand determinants of fatty acid activation of the pronociceptive ion channel TRPA1. PeerJ, 2014, 2, e248.	0.9	29
65	Distinct Temporal Fingerprint for Cyclic Adenosine Monophosphate (cAMP) Signaling of Indole-2-carboxamides as Allosteric Modulators of the Cannabinoid Receptors. Journal of Medicinal Chemistry, 2015, 58, 5979-5988.	2.9	28
66	Cellular actions of somatostatin on rat periaqueductal grey neurons in vitro. British Journal of Pharmacology, 2004, 142, 1273-1280.	2.7	26
67	Structure–activity relationships of synthetic cannabinoid designer drug RCS-4 and its regioisomers and C4 homologues. Forensic Toxicology, 2015, 33, 355-366.	1.4	26
68	Decreased μ -opioid receptor signalling and a reduction in calcium current density in sensory neurons from chronically morphine-treated mice. British Journal of Pharmacology, 2006, 148, 947-955.	2.7	24
69	Buprenorphine signalling is compromised at the <scp>N</scp> 40 <scp>D</scp> polymorphism of the human μ opioid receptor <i>in vitro</i> . British Journal of Pharmacology, 2014, 171, 4273-4288.	2.7	24
70	Identification of <i>N</i> â€arachidonoyl dopamine as a highly biased ligand at cannabinoid CB ₁ receptors. British Journal of Pharmacology, 2016, 173, 115-127.	2.7	23
71	δ-opioid Receptor Mobilization of Intracellular Calcium in SH-SY5Y Cells: Lack of Evidence for δ-receptor Subtypes. Neuropharmacology, 1997, 36, 125-133.	2.0	22
72	Cortistatin increase of a potassium conductance in rat locus coeruleus in vitro. British Journal of Pharmacology, 1997, 122, 1567-1572.	2.7	22

#	Article	IF	CITATIONS
73	Allopurinol for pain relief: more than just crystal clearance?. British Journal of Pharmacology, 2009, 156, 4-6.	2.7	21
74	Focal stimulation of specific pathways in the rat hippocampus causes a reduction in radioligand binding to the haloperidol-sensitive sigma receptor. Experimental Brain Research, 1991, 85, 528-36.	0.7	19
75	Convulsant actions of calycanthine. Toxicology and Applied Pharmacology, 2003, 190, 58-64.	1.3	19
76	Constitutively Active μ-Opioid Receptors. Methods in Enzymology, 2010, 484, 445-469.	0.4	19
77	Cellular signalling of nonâ€synonymous singleâ€nucleotide polymorphisms of the human μâ€opioid receptor (<scp>OPRM</scp> 1). British Journal of Pharmacology, 2015, 172, 349-363.	2.7	19
78	Strategies to develop selective CB2 receptor agonists from indole carboxamide synthetic cannabinoids. European Journal of Medicinal Chemistry, 2019, 180, 291-309.	2.6	19
79	Inhibition of human recombinant Tâ€ŧype calcium channels by <i>N</i> â€arachidonoyl 5â€HT. British Journal of Pharmacology, 2012, 167, 1076-1088.	2.7	18
80	Wideâ€field timeâ€gated photoluminescence microscopy for fast ultrahighâ€sensitivity imaging of photoluminescent probes. Journal of Biophotonics, 2016, 9, 848-858.	1.1	17
81	The chemistry and pharmacology of putative synthetic cannabinoid receptor agonist (SCRA) new psychoactive substances (NPS) 5Fâ€PYâ€PICA, 5Fâ€PYâ€PINACA, and their analogs. Drug Testing and Analysis, 2019, 11, 976-989.	1.6	17
82	Differential activation of G proteinâ€mediated signaling by synthetic cannabinoid receptor agonists. Pharmacology Research and Perspectives, 2020, 8, e00566.	1.1	16
83	Modulation of human T-type calcium channels by synthetic cannabinoid receptor agonists in vitro. Neuropharmacology, 2021, 187, 108478.	2.0	16
84	Sex differences in the expression of serotonin-synthesizing enzymes in mouse trigeminal ganglia. Neuroscience, 2011, 199, 429-437.	1.1	15
85	Targeting somatostatin receptors usingin situ-bioconjugated fluorescent nanoparticles. Nanomedicine, 2012, 7, 1551-1560.	1.7	15
86	Development of Bright and Biocompatible Nanoruby and Its Application to Background-Free Time-Gated Imaging of G-Protein-Coupled Receptors. ACS Applied Materials & Interfaces, 2017, 9, 39197-39208.	4.0	14
87	Exploring Stereochemical and Conformational Requirements at Cannabinoid Receptors for Synthetic Cannabinoids Related to SDB-006, 5F-SDB-006, CUMYL-PICA, and 5F-CUMYL-PICA. ACS Chemical Neuroscience, 2020, 11, 3672-3682.	1.7	14
88	In Search of a Role for the Morphine Metabolite Morphine-3-Glucuronide. Anesthesia and Analgesia, 2003, 97, 311-312.	1.1	13
89	δ-opioid receptor-mediated actions on rostral ventromedial medulla neurons. Neuroscience, 2005, 132, 239-244.	1.1	13
90	A Real-Time, Fluorescence-Based Assay for Measuring µ-Opioid Receptor Modulation of Adenylyl Cyclase Activity in Chinese Hamster Ovary Cells. Journal of Biomolecular Screening, 2014, 19, 223-231.	2.6	13

#	Article	IF	CITATIONS
91	Synthesis and in vitro evaluation of fluorine-18 benzimidazole sulfones as CB2 PET-radioligands. Organic and Biomolecular Chemistry, 2019, 17, 5086-5098.	1.5	13
92	Inhibition of human recombinant Tâ€ŧype calcium channels by phytocannabinoids in vitro. British Journal of Pharmacology, 2022, 179, 4031-4043.	2.7	13
93	Has the sun set on \hat{I}° 3 -opioid receptors?. British Journal of Pharmacology, 2006, 147, 349-350.	2.7	12
94	Pharmacological Characterization of a Recombinant, Fluorescent Somatostatin Receptor Agonist. Bioconjugate Chemistry, 2011, 22, 1768-1775.	1.8	12
95	The chemistry and pharmacology of synthetic cannabinoid SDBâ€006 and its regioisomeric fluorinated and methoxylated analogs. Drug Testing and Analysis, 2018, 10, 1099-1109.	1.6	12
96	A systematic literature review and meta-analysis of the effect of psilocybin and methylenedioxymethamphetamine on mental, behavioural or developmental disorders. Australian and New Zealand Journal of Psychiatry, 2023, 57, 362-378.	1.3	12
97	Methanandamide activation of a novel current in mouse trigeminal ganglion sensory neurons in vitro. Neuropharmacology, 2008, 54, 172-180.	2.0	11
98	Flexible analogues of WAY-267,464: Synthesis and pharmacology at the human oxytocin and vasopressin 1 a receptors. European Journal of Medicinal Chemistry, 2016, 108, 730-740.	2.6	11
99	New-generation azaindole-adamantyl-derived synthetic cannabinoids. Forensic Toxicology, 2019, 37, 350-365.	1.4	11
100	δand μ opioid receptor mobilization of intracellular calcium in neuroblastoma cells. Regulatory Peptides, 1994, 54, 65-66.	1.9	10
101	Quantifying the Kinetics of Signaling and Arrestin Recruitment by Nervous System G-Protein Coupled Receptors. Frontiers in Cellular Neuroscience, 2021, 15, 814547.	1.8	10
102	<scp>A</scp> 6 <scp>V</scp> polymorphism of the human <scp>μ</scp> â€opioid receptor decreases signalling of morphine and endogenous opioids <i>in vitro</i> . British Journal of Pharmacology, 2015, 172, 2258-2272.	2.7	9
103	Fluorescence-Based, High-Throughput Assays for μ-Opioid Receptor Activation Using a Membrane Potential-Sensitive Dye. Methods in Molecular Biology, 2015, 1230, 177-185.	0.4	9
104	Opioid receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	9
105	Bradykinin Inhibition of N- and L-type Calcium Channel Currents in NG108-15 Cells. Neuropharmacology, 1997, 36, 115-124.	2.0	8
106	Towards a Receptor for Nocistatin?. British Journal of Pharmacology, 2007, 152, 415-416.	2.7	8
107	Polysialic Acid Regulates Sympathetic Outflow by Facilitating Information Transfer within the Nucleus of the Solitary Tract. Journal of Neuroscience, 2017, 37, 6558-6574.	1.7	8
108	Shadows across μ‣tar? Constitutively active μâ€opioid receptors revisited. British Journal of Pharmacology, 2009, 156, 1041-1043.	2.7	7

#	Article	IF	CITATIONS
109	Synthesis and evaluation of various heteroaromatic benzamides as analogues of –ylidene-benzamide cannabinoid type 2 receptor agonists. Tetrahedron Letters, 2019, 60, 151019.	0.7	7
110	Modulation of Recombinant Human T-Type Calcium Channels by î" ⁹ -Tetrahydrocannabinolic Acid <i>In Vitro</i> . Cannabis and Cannabinoid Research, 2022, 7, 34-45.	1.5	7
111	Brodifacoum does not modulate human cannabinoid receptor-mediated hyperpolarization of AtT20 cells or inhibition of adenylyl cyclase in HEK 293 cells. PeerJ, 2019, 7, e7733.	0.9	7
112	The potentiating effect of calcitonin gene-related peptide on transient receptor potential vanilloid-1 activity and the electrophysiological responses of rat trigeminal neurons to nociceptive stimuli. Journal of Physiological Sciences, 2018, 68, 261-268.	0.9	6
113	Conformationally rigid derivatives of WAY-267,464: Synthesis and pharmacology at the human oxytocin and vasopressin-1a receptors. European Journal of Medicinal Chemistry, 2018, 143, 1644-1656.	2.6	6
114	The discovery of a potent and selective pyrazolo-[2,3-e]-[1,2,4]-triazine cannabinoid type 2 receptor agonist. European Journal of Medicinal Chemistry, 2021, 210, 113087.	2.6	6
115	Tapentadol shows lower intrinsic efficacy at µ receptor than morphine and oxycodone. Pharmacology Research and Perspectives, 2022, 10, e00921.	1.1	6
116	Defining Steric Requirements at CB ₁ and CB ₂ Cannabinoid Receptors Using Synthetic Cannabinoid Receptor Agonists 5F-AB-PINACA, 5F-ADB-PINACA, PX-1, PX-2, NNL-1, and Their Analogues. ACS Chemical Neuroscience, 2022, 13, 1281-1295.	1.7	6
117	Frequency-dependent neuromuscular blockade by textilotoxin in vivo. Toxicon, 1991, 29, 1266-1269.	0.8	5
118	Lifetime-Engineered Ruby Nanoparticles (Tau-Rubies) for Multiplexed Imaging of μ-Opioid Receptors. ACS Sensors, 2021, 6, 1375-1383.	4.0	5
119	Nordihydroguaiaretic acid activates hTRPA 1 and modulates behavioral responses to noxious cold in mice. Pharmacology Research and Perspectives, 2014, 2, e00079.	1.1	4
120	Investigation of pyrazolo-sulfonamides as putative small molecule oxytocin receptor agonists. European Journal of Medicinal Chemistry, 2017, 136, 330-333.	2.6	4
121	Regulation of heterologously expressed 5â€HT ₁₈ receptors coupling to potassium channels in AtTâ€20 cells. British Journal of Pharmacology, 2019, 176, 451-465.	2.7	4
122	Putative Synthetic Cannabinoids MEPIRAPIM, 5F-BEPIRAPIM (NNL-2), and Their Analogues Are T-Type Calcium Channel (Ca _V 3) Inhibitors. ACS Chemical Neuroscience, 2022, 13, 1395-1409.	1.7	4
123	Oocytes from Xenopus laevis contain an intrinsic σ2-like binding site. Neuroscience Letters, 1994, 180, 159-162.	1.0	3
124	Do gabapentin or pregabalin directly modulate the $\hat{A}\mu$ receptor?. PeerJ, 2021, 9, e11175.	0.9	3
125	Chronic ethanol promotes the neuronal differentiation of NG108-15 cells independently of toxin-sensitive G-proteins. Environmental Toxicology and Pharmacology, 1997, 3, 307-319.	2.0	2
126	Humanizing mice: catching up with elusive B1 receptors. British Journal of Pharmacology, 2005, 144, 885-886.	2.7	2

#	Article	IF	CITATIONS
127	What would 5â€HT do? Regional diversity of 5â€HT ₁ receptor modulation of primary afferent neurotransmission. British Journal of Pharmacology, 2012, 167, 353-355.	2.7	1
128	Opioid receptors in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	1
129	Spider toxins: A new group of potassium channel modulators. Journal of Computer - Aided Molecular Design, 1999, 15/16, 61-69.	1.0	0
130	Interfacing nanodiamonds for single molecular optical-biomedical imaging. , 2011, , .		0
131	Themed section. British Journal of Pharmacology, 2015, 172, 247-250.	2.7	0
132	Employing the Operational to Measure System-Independent OTR Efficacy. Methods in Molecular Biology, 2022, 2384, 201-220.	0.4	0
133	Pyrazolo[1, 4]diazepine-based small molecule oxytocin receptor partial agonists. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-1-24.	0.0	0
134	Functionalization and Bioconjugation of Nanoruby for Long-Term, Ultrasensitive Imaging of Μu-Opioid Receptors. Methods in Molecular Biology, 2021, 2201, 59-70.	0.4	0