## Peter Spijker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8396305/publications.pdf

Version: 2024-02-01



DETED SDIIKED

| #  | Article                                                                                                                                                                                                                         | IF          | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 1  | Atomically controlled substitutional boron-doping of graphene nanoribbons. Nature<br>Communications, 2015, 6, 8098.                                                                                                             | 5.8         | 400       |
| 2  | Direct Visualization of Single Ions in the Stern Layer of Calcite. Langmuir, 2013, 29, 2207-2216.                                                                                                                               | 1.6         | 150       |
| 3  | Water-induced correlation between single ions imaged at the solid–liquid interface. Nature<br>Communications, 2014, 5, 4400.                                                                                                    | 5.8         | 150       |
| 4  | Mechanism of atomic force microscopy imaging of three-dimensional hydration structures at a solid-liquid interface. Physical Review B, 2015, 92, .                                                                              | 1.1         | 96        |
| 5  | The Bilayerâ^'Vesicle Transition Is Entropy Driven. Journal of Physical Chemistry B, 2005, 109, 22649-22654.                                                                                                                    | 1.2         | 80        |
| 6  | Direct quantitative measurement of the Câ•Oâ‹â‹â‹H–C bond by atomic force microscopy. Science Advanc<br>2017, 3, e1603258.                                                                                                      | ces,<br>4.7 | 80        |
| 7  | Computation of accommodation coefficients and the use of velocity correlation profiles in molecular dynamics simulations. Physical Review E, 2010, 81, 011203.                                                                  | 0.8         | 72        |
| 8  | Thermal control of sequential on-surface transformation of a hydrocarbon molecule on a copper surface. Nature Communications, 2016, 7, 12711.                                                                                   | 5.8         | 71        |
| 9  | Dissolution Processes at Step Edges of Calcite in Water Investigated by High-Speed Frequency<br>Modulation Atomic Force Microscopy and Simulation. Nano Letters, 2017, 17, 4083-4089.                                           | 4.5         | 67        |
| 10 | Competing Annulene and Radialene Structures in a Single Anti-Aromatic Molecule Studied by<br>High-Resolution Atomic Force Microscopy. ACS Nano, 2017, 11, 8122-8130.                                                            | 7.3         | 64        |
| 11 | Atomic-resolution three-dimensional hydration structures on a heterogeneously charged surface.<br>Nature Communications, 2017, 8, 2111.                                                                                         | 5.8         | 57        |
| 12 | On the Propagation of Slip Fronts at Frictional Interfaces. Tribology Letters, 2012, 48, 27-32.                                                                                                                                 | 1.2         | 50        |
| 13 | Chemical Identification at the Solid–Liquid Interface. Langmuir, 2017, 33, 125-129.                                                                                                                                             | 1.6         | 50        |
| 14 | Dry Sliding Contact Between Rough Surfaces at the Atomistic Scale. Tribology Letters, 2011, 44, 279-285.                                                                                                                        | 1.2         | 49        |
| 15 | Relations between roughness, temperature and dry sliding friction at the atomic scale. Tribology International, 2013, 59, 222-229.                                                                                              | 3.0         | 48        |
| 16 | Dynamic behavior of fully solvated beta2-adrenergic receptor, embedded in the membrane with bound agonist or antagonist. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4882-4887. | 3.3         | 43        |
| 17 | Vesicle Deformation by Draining: Geometrical and Topological Shape Changes. Journal of Physical Chemistry B, 2009, 113, 8731-8737.                                                                                              | 1.2         | 41        |
| 18 | Visualising the molecular alteration of the calcite (104) – water interface by sodium nitrate. Scientific<br>Reports, 2016, 6, 21576.                                                                                           | 1.6         | 37        |

Peter Spijker

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The effect of loading on surface roughness at the atomistic level. Computational Mechanics, 2012, 50, 273-283.                                                                                                                                    | 2.2 | 32        |
| 20 | Ab initio Kinetic Monte Carlo simulations of dissolution at the NaCl–water interface. Physical Chemistry Chemical Physics, 2014, 16, 22545-22554.                                                                                                 | 1.3 | 30        |
| 21 | Coarse Grained Molecular Dynamics Simulations of Transmembrane Protein-Lipid Systems.<br>International Journal of Molecular Sciences, 2010, 11, 2393-2420.                                                                                        | 1.8 | 25        |
| 22 | Understanding the Interface of Liquids with an Organic Crystal Surface from Atomistic Simulations and AFM Experiments. Journal of Physical Chemistry C, 2014, 118, 2058-2066.                                                                     | 1.5 | 23        |
| 23 | Molecular Resolution of the Water Interface at an Alkali Halide with Terraces and Steps. Journal of Physical Chemistry C, 2016, 120, 19714-19722.                                                                                                 | 1.5 | 21        |
| 24 | Understanding 2D atomic resolution imaging of the calcite surface in water by frequency modulation atomic force microscopy. Nanotechnology, 2016, 27, 415709.                                                                                     | 1.3 | 20        |
| 25 | Intrinsic Superhydrophilicity of Titania-Terminated Surfaces. Journal of Physical Chemistry C, 2017, 121, 2268-2275.                                                                                                                              | 1.5 | 19        |
| 26 | Hydration layers at the graphite-water interface: Attraction or confinement. Physical Review B, 2019, 100, .                                                                                                                                      | 1.1 | 15        |
| 27 | Tip dependence of three-dimensional scanning force microscopy images of calcite–water interfaces investigated by simulation and experiments. Nanoscale, 2020, 12, 12856-12868.                                                                    | 2.8 | 15        |
| 28 | Implicit particle wall boundary condition in molecular dynamics. Proceedings of the Institution of<br>Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2008, 222, 855-864.                                                | 1.1 | 10        |
| 29 | Flexible and modular virtual scanning probe microscope. Computer Physics Communications, 2015, 196, 429-438.                                                                                                                                      | 3.0 | 10        |
| 30 | Gas-surface interactions using accommodation coefficients for a dilute and a dense gas in a micro- or<br>nanochannel: Heat flux predictions using combined molecular dynamics and Monte Carlo techniques.<br>Physical Review E, 2014, 89, 053012. | 0.8 | 8         |
| 31 | Three-dimensional solvation structure of ethanol on carbonate minerals. Beilstein Journal of<br>Nanotechnology, 2020, 11, 891-898.                                                                                                                | 1.5 | 8         |
| 32 | Velocity Correlations and Accommodation Coefficients for Gas-Wall Interactions in Nanochannels. ,<br>2008, , .                                                                                                                                    |     | 5         |
| 33 | High-Speed Atomic Force Microscopy of the Structure and Dynamics of Calcite Nanoscale Etch Pits.<br>Journal of Physical Chemistry Letters, 2021, 12, 8039-8045.                                                                                   | 2.1 | 5         |
| 34 | Velocity Correlations Between Impinging and Reflecting Particles Using MD Simulations and Different<br>Wall Models. , 2008, , .                                                                                                                   |     | 1         |
| 35 | New Derivation of a Particle Wall Boundary Condition in Molecular Dynamics. , 2007, , 767.                                                                                                                                                        |     | 0         |
|    |                                                                                                                                                                                                                                                   |     |           |