Tianlu Mao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8396192/publications.pdf Version: 2024-02-01

ΤΙΔΝΙΤΙ ΜΑΟ

#	Article	IF	CITATIONS
1	STGAT: Modeling Spatial-Temporal Interactions for Human Trajectory Prediction. , 2019, , .		285
2	A Survey on Visual Traffic Simulation: Models, Evaluations, and Applications in Autonomous Driving. Computer Graphics Forum, 2020, 39, 287-308.	3.0	63
3	Continuum crowd simulation in complex environments. Computers and Graphics, 2010, 34, 537-544.	2.5	50
4	Vehicle tracking by detection in UAV aerial video. Science China Information Sciences, 2019, 62, 1.	4.3	22
5	A semantic environment model for crowd simulation in multilayered complex environment. , 2009, , .		18
6	A Deep Learning-Based Framework for Intersectional Traffic Simulation and Editing. IEEE Transactions on Visualization and Computer Graphics, 2020, 26, 2335-2348.	4.4	10
7	CoL-GAN: Plausible and Collision-Less Trajectory Prediction by Attention-Based GAN. IEEE Access, 2020, 8, 101662-101671.	4.2	10
8	An efficient lane model for complex traffic simulation. Computer Animation and Virtual Worlds, 2015, 26, 397-403.	1.2	9
9	Parallelizing continuum crowds. , 2010, , .		7
10	Learning a shared deformation space for efficient design-preserving garment transfer. Graphical Models, 2021, 115, 101106.	2.4	5
11	Saliency-dependent adaptive remeshing for cloth simulation. Textile Reseach Journal, 2021, 91, 480-495.	2.2	3
12	A local evaluation approach for multi-agent navigation in dynamic scenarios. , 2014, , .		1
13	Image-Based Rendering for Large-Scale Outdoor Scenes With Fusion of Monocular and Multi-View Stereo Depth. IEEE Access, 2020, 8, 117551-117565.	4.2	1
14	Evoking Panic in Crowd Simulation. Lecture Notes in Computer Science, 2011, , 79-88.	1.3	1
15	Multicomponent Spatial-Temporal Graph Attention Convolution Networks for Traffic Prediction with Spatially Sparse Data. Computational Intelligence and Neuroscience, 2021, 2021, 1-12.	1.7	1
16	MDST-DGCN: A Multilevel Dynamic Spatiotemporal Directed Graph Convolutional Network for Pedestrian Trajectory Prediction. Computational Intelligence and Neuroscience, 2022, 2022, 1-10.	1.7	1
17	R TM: A dataâ€driven macroscopic simulation model for heterogeneous traffic. Computer Animation and Virtual Worlds, 0, , .	1.2	0