
Zheng Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8396024/publications.pdf Version: 2024-02-01

ZUENC IN

#	Article	IF	CITATIONS
1	Mannose-anchored quaternized chitosan/thiolated carboxymethyl chitosan composite NPs as mucoadhesive carrier for drug delivery. Carbohydrate Polymers, 2022, 283, 119174.	5.1	33
2	Evaluation of Chitosan Derivatives Modified Mesoporous Silica Nanoparticles as Delivery Carrier. Molecules, 2021, 26, 2490.	1.7	12
3	Intranasal immunization with O-2′-Hydroxypropyl trimethyl ammonium chloride chitosan nanoparticles loaded with Newcastle disease virus DNA vaccine enhances mucosal immune response in chickens. Journal of Nanobiotechnology, 2021, 19, 240.	4.2	11
4	N-2-Hydroxypropyl Trimethyl Ammonium Chloride Chitosan as Adjuvant Enhances the Immunogenicity of a VP2 Subunit Vaccine against Porcine Parvovirus Infection in Sows. Vaccines, 2021, 9, 1027.	2.1	5
5	Self-Assembly of Soluble Chitosan Derivatives Nanoparticles for Vaccine: Synthesis, Characterization and Evaluation. Polymers, 2021, 13, 4097.	2.0	4
6	Targeting delivery of partial VAR2CSA peptide guided N-2-Hydroxypropyl trimethyl ammonium chloride chitosan nanoparticles for multiple cancer types. Materials Science and Engineering C, 2020, 106, 110171.	3.8	8
7	An overview of biodegradable nanomaterials and applications in vaccines. Vaccine, 2020, 38, 1096-1104.	1.7	36
8	Chitosan Derivatives and Their Application in Biomedicine. International Journal of Molecular Sciences, 2020, 21, 487.	1.8	467
9	A waste utilization strategy for preparing high-performance supercapacitor electrodes with sea urchin-like structure. Ionics, 2020, 26, 3565-3577.	1.2	3
10	Preparation and performance of PANI/RFC/rGO composite electrode materials for supercapacitors. Ionics, 2020, 26, 4031-4038.	1.2	3
11	Water-soluble N-2-Hydroxypropyl trimethyl ammonium chloride chitosan enhanced the immunogenicity of inactivated porcine parvovirus vaccine vaccination on sows against porcine parvovirus infection. Immunology Letters, 2020, 223, 26-32.	1.1	9
12	Dendrigraft poly-L-lysines delivery of DNA vaccine effectively enhances the immunogenic responses against H9N2 avian influenza virus infection in chickens. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 27, 102209.	1.7	10
13	Quaternized Chitosan Nanoparticles in Vaccine Applications. Current Medicinal Chemistry, 2020, 27, 4932-4944.	1.2	17
14	Adjuvants and delivery systems based on polymeric nanoparticles for mucosal vaccines. International Journal of Pharmaceutics, 2019, 572, 118731.	2.6	73
15	Targeted Delivery Prodigiosin to Choriocarcinoma by Peptide-Guided Dendrigraft Poly-I-lysines Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 5458.	1.8	18
16	Bead chain structure RFC/ACF by electrospinning for supercapacitors. Pigment and Resin Technology, 2019, 48, 439-448.	0.5	0
17	Applications of polymer-based nanoparticles in vaccine field. Nanotechnology Reviews, 2019, 8, 143-155.	2.6	54
18	Effect of Core-Shell Morphology on the Mechanical Properties and Crystallization Behavior of HDPE/HDPE-g-MA/PA6 Ternary Blends. Polymers, 2018, 10, 1040.	2.0	11

ZHENG JIN

#	Article	IF	CITATIONS
19	Enhancing Mucosal Immune Response of Newcastle Disease Virus DNA Vaccine Using <i>N</i> -2-Hydroxypropyl Trimethylammonium Chloride Chitosan and <i>N</i> , <i>O</i> -Carboxymethyl Chitosan Nanoparticles as Delivery Carrier. Molecular Pharmaceutics, 2018, 15, 226-237.	2.3	52
20	Polymer-Based Nanomaterials and Applications for Vaccines and Drugs. Polymers, 2018, 10, 31.	2.0	227
21	Polyurethane foam derived nitrogen-enriched porous carbon/reduced graphene oxide composite with sandwich-like nanoarchitectures for supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 9942-9953.	1.1	3
22	Polyurethane and polyaniline foam-derived nickel oxide-incorporated porous carbon composite for high-performance supercapacitors. Journal of Materials Science, 2018, 53, 13156-13172.	1.7	12
23	Reinforcing high-density polyethylene by polyacrylonitrile fibers. Pigment and Resin Technology, 2018, 47, 86-94.	0.5	3
24	Preparation of inflorescence-like ACNF/PANI/NiO composite with three-dimension nanostructure for high performance supercapacitors. Journal of Electroanalytical Chemistry, 2017, 790, 40-49.	1.9	29
25	Response of live Newcastle disease virus encapsulated in N -2-hydroxypropyl dimethylethyl ammonium chloride chitosan nanoparticles. Carbohydrate Polymers, 2017, 171, 267-280.	5.1	24
26	Toughening polypropylene by tiny amounts of fillers. Pigment and Resin Technology, 2017, 46, 309-317.	0.5	4
27	High-Density Polyethylene-Based Ternary Blends Toughened by PA6/PBT Core–Shell Particles. Polymer-Plastics Technology and Engineering, 2017, 56, 1908-1915.	1.9	10
28	Quaternized chitosan nanoparticles loaded with the combined attenuated live vaccine against Newcastle disease and infectious bronchitis elicit immune response in chicken after intranasal administration. Drug Delivery, 2017, 24, 1574-1586.	2.5	57
29	Advances and Potential Applications of Chitosan Nanoparticles as a Delivery Carrier for the Mucosal Immunity of Vaccine. Current Drug Delivery, 2017, 14, 27-35.	0.8	20
30	lgA response and protection following nasal vaccination of chickens with Newcastle disease virus DNA vaccine nanoencapsulated with Ag@SiO2 hollow nanoparticles. Scientific Reports, 2016, 6, 25720.	1.6	37
31	Biological evaluation of N-2-hydroxypropyl trimethyl ammonium chloride chitosan as a carrier for the delivery of live Newcastle disease vaccine. Carbohydrate Polymers, 2016, 149, 28-39.	5.1	44
32	A controllable morphology GO/PANI/metal hydroxide composite for supercapacitor. Journal of Electroanalytical Chemistry, 2016, 777, 75-84.	1.9	56
33	Modified polyacrylonitrile-based activated carbon fibers applied in supercapacitor. Pigment and Resin Technology, 2016, 45, 164-171.	0.5	5
34	Effect of Degrees of Substitution on Physicochemical Properties of 2-Hydroxypropyl Trimethyl Ammonium Chloride Chitosan. Science of Advanced Materials, 2016, 8, 1433-1439.	0.1	4
35	Preparation and electrochemical performance of nitrogen-enriched carbon based on melamine formaldehyde resin/graphene oxide composites. Pigment and Resin Technology, 2015, 44, 205-213.	0.5	2
36	The influence of urea on composition, microstructure and electrochemical properties of nitrogen-enriched carbon based on polyvinylpyrrolidone/melamine formaldehyde resin. Pigment and Resin Technology, 2015, 44, 257-265.	0.5	3

ZHENG JIN

#	Article	IF	CITATIONS
37	Synthesis, characterization, and immune efficacy of layered double hydroxide@SiO2 nanoparticles with shell-core structure as a delivery carrier for Newcastle disease virus DNA vaccine. International Journal of Nanomedicine, 2015, 10, 2895.	3.3	18
38	O -2′-Hydroxypropyltrimethyl ammonium chloride chitosan nanoparticles for the delivery of live Newcastle disease vaccine. Carbohydrate Polymers, 2015, 130, 280-289.	5.1	44
39	Electrochemical and electrochromic behaviors of polyaniline-graphene oxide composites on the glass substrate/Ag nano-film electrodes prepared by vertical target pulsed laser deposition. Dyes and Pigments, 2015, 117, 72-82.	2.0	34
40	Preparation, Characterization and Hypoglycaemic Effects of Orally Delivered Insulin-Loaded PLGA Nanoparticles in Diabetic Rats. Science of Advanced Materials, 2015, 7, 1114-1124.	0.1	1
41	Chitosan-coated poly(lactic-co-glycolic) acid nanoparticles as an efficient delivery system for Newcastle disease virus DNA vaccine. International Journal of Nanomedicine, 2014, 9, 4609.	3.3	62
42	Preparation and efficacy of Newcastle disease virus DNA vaccine encapsulated in chitosan nanoparticles. International Journal of Nanomedicine, 2014, 9, 389.	3.3	66
43	Antimicrobial activity and cytotoxicity of N-2-HACC and characterization of nanoparticles with N-2-HACC and CMC as a vaccine carrier. Chemical Engineering Journal, 2013, 221, 331-341.	6.6	49
44	Preparation and Efficacy of Newcastle Disease Virus DNA Vaccine Encapsulated in PLGA Nanoparticles. PLoS ONE, 2013, 8, e82648.	1.1	47
45	Preparation and Photoluminescence of Titanium Oxide Nanofilms by Laser-Induced Forward Transfer. Current Nanoscience, 2012, 8, 150-155.	0.7	1
46	Study of activated nitrogen-enriched carbon and nitrogen-enriched carbon/carbon aerogel composite as cathode materials for supercapacitors. Materials Chemistry and Physics, 2011, 126, 453-458.	2.0	36
47	Research on Electrochemical Properties of Alpha-Ni(OH) ₂ Prepared by Electrodeposition Method in the Ethanol and Water System. Advanced Materials Research, 2011, 311-313, 1421-1424.	0.3	0
48	Activated Nitrogen-Enriched Carbon/Reduced Expanded Graphite Composites for Supercapacitors. Advanced Materials Research, 2011, 211-212, 440-444.	0.3	2
49	Preparation and Characterization of 2-Hydroxypropyltrimcthyl Ammonium Chloride Chitosan. Advanced Materials Research, 2011, 183-185, 2216-2220.	0.3	0
50	Hybrid supercapacitors based on polyaniline and activated carbon composite electrode materials. Pigment and Resin Technology, 2011, 40, 235-239.	0.5	13
51	Electrochemical properties of carbon aerogels derived from resorcinolâ€formaldehydeâ€aniline for supercapacitors. Pigment and Resin Technology, 2011, 40, 175-180.	0.5	3
52	Electrochemical supercapacitors based on carbon aerogels/Ni(OH)2 composites and activated carbon. Pigment and Resin Technology, 2009, 38, 230-235.	0.5	5
53	Activated nitrogen-enriched carbon/carbon aerogel nanocomposites for supercapacitor applications. Transactions of Nonferrous Metals Society of China, 2009, 19, s738-s742.	1.7	22
54	Compatibility of Polyurethane/(vinyl ester resin)(ethyl acrylate) Interpenetrating Polymer Network. Polymer Journal, 2007, 39, 1365-1372.	1.3	12

ZHENG JIN

#	Article	IF	CITATIONS
55	Effects of ozone method treating carbon fibers on mechanical properties of carbon/carbon composites. Materials Chemistry and Physics, 2006, 97, 167-172.	2.0	75
56	Preparation and Properties of Carbon Nanotube / Polyaniline Nanocomposites. Advanced Materials Research, 0, 391-392, 13-17.	0.3	0
57	Hybrid Supercapacitors Based on Polyaniline and Carbon Aerogels Composite Electrode Materials. Advanced Materials Research, 0, 391-392, 18-22.	0.3	0
58	Hybrid Supercapacitors Based on Polyaniline/Activated Carbon Fiber Composite Electrode Materials. Advanced Materials Research, 0, 800, 505-508.	0.3	5
59	Optimization of the NDV-N-2-HACC/CMC Microspheres Preparation. Advanced Materials Research, 0, 804, 85-88.	0.3	0
60	Mechanical Properties of Fumed Silica/PP Composites. Applied Mechanics and Materials, 0, 665, 319-322.	0.2	0
61	Mechanical Properties of Fumed Silica / HDPE Composites. Applied Mechanics and Materials, 0, 633-634,	0.2	3