
Antonio Di Cristofano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8395872/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	2021 American Thyroid Association Guidelines for Management of Patients with Anaplastic Thyroid Cancer. Thyroid, 2021, 31, 337-386.	2.4	297
2	The Year in Basic Thyroid Cancer Research. Thyroid, 2021, , .	2.4	0
3	Highlights from <i>The Year in Thyroidology</i> . VideoEndocrinology, 2021, 8, .	0.1	0
4	Metabolic Role of PTEN in Insulin Signaling and Resistance. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a036137.	2.9	19
5	Real-time, high-resolution imaging of tumor cells in genetically engineered and orthotopic models of thyroid cancer. Endocrine-Related Cancer, 2020, 27, 529-539.	1.6	1
6	Real-time, high-resolution imaging of tumor cells in genetically engineered and orthotopic models of thyroid cancer. Endocrine-Related Cancer, 2020, 27, 529-539.	1.6	5
7	Synergistic repression of thyroid hyperplasia by cyclin C and Pten. Journal of Cell Science, 2019, 132, .	1.2	9
8	PI3K/mTOR inhibition potentiates and extends palbociclib activity in anaplastic thyroid cancer. Endocrine-Related Cancer, 2019, 26, 425-436.	1.6	33
9	PI3K blockage synergizes with PLK1 inhibition preventing endoreduplication and enhancing apoptosis in anaplastic thyroid cancer. Cancer Letters, 2018, 439, 56-65.	3.2	18
10	SGK1 Is a Critical Component of an AKT-Independent Pathway Essential for PI3K-Mediated Tumor Development and Maintenance. Cancer Research, 2017, 77, 6914-6926.	0.4	32
11	SGK1. Current Topics in Developmental Biology, 2017, 123, 49-71.	1.0	83
12	MCM5 as a target of BET inhibitors in thyroid cancer cells. Endocrine-Related Cancer, 2016, 23, 335-347.	1.6	42
13	Obatoclax kills anaplastic thyroid cancer cells by inducing lysosome neutralization and necrosis. Oncotarget, 2016, 7, 34453-34471.	0.8	21
14	Modeling Anaplastic Thyroid Carcinoma in the Mouse. Hormones and Cancer, 2015, 6, 37-44.	4.9	7
15	Synergistic effect of combined PI3K and PLK1 inhibition in anaplastic thyroid carcinoma cells Journal of Clinical Oncology, 2015, 33, e22205-e22205.	0.8	0
16	Obatoclax overcomes resistance to cell death in aggressive thyroid carcinomas by countering Bcl2a1 and Mcl1 overexpression. Endocrine-Related Cancer, 2014, 21, 755-767.	1.6	27
17	The PLK1 Inhibitor GSK461364A Is Effective in Poorly Differentiated and Anaplastic Thyroid Carcinoma Cells, Independent of the Nature of Their Driver Mutations. Thyroid, 2013, 23, 1284-1293.	2.4	30
18	Molecular Differences Between Human Thyroid Follicular Adenoma and Carcinoma Revealed by Analysis of a Murine Model of Thyroid Cancer. Endocrinology, 2013, 154, 3043-3053.	1.4	24

#	Article	IF	CITATIONS
19	Obesity and Thyroid Cancer: Is Leptin the (Only) Link?. Endocrinology, 2013, 154, 2567-2569.	1.4	9
20	Inhibition of AMPK and Krebs Cycle Gene Expression Drives Metabolic Remodeling of <i>Pten</i> -Deficient Preneoplastic Thyroid Cells. Cancer Research, 2013, 73, 5459-5472.	0.4	33
21	Threeâ€dimensional nuclear telomere architecture changes during endometrial carcinoma development. Genes Chromosomes and Cancer, 2013, 52, 716-732.	1.5	7
22	Embryonic epithelial Pten deletion through Nkx2.1-cre leads to thyroid tumorigenesis in a strain-dependent manner. Endocrine-Related Cancer, 2013, 20, X1.	1.6	0
23	Embryonic epithelial Pten deletion through Nkx2.1-cre leads to thyroid tumorigenesis in a strain-dependent manner. Endocrine-Related Cancer, 2012, 19, 111-122.	1.6	9
24	New Routes to Old Places: <i>PIK3R1</i> and <i>PIK3R2</i> Join <i>PIK3CA</i> and <i>PTEN</i> as Endometrial Cancer Genes. Cancer Discovery, 2011, 1, 106-107.	7.7	14
25	Establishment and Characterization of Cell Lines from a Novel Mouse Model of Poorly Differentiated Thyroid Carcinoma: Powerful Tools for Basic and Preclinical Research. Thyroid, 2011, 21, 1001-1007.	2.4	12
26	Mouse Models of Follicular and Papillary Thyroid Cancer Progression. Frontiers in Endocrinology, 2011, 2, 119.	1.5	7
27	Thyrocyte-specific inactivation of <i>p53</i> and <i>Pten</i> results in anaplastic thyroid carcinomas faithfully recapitulating human tumors. Oncotarget, 2011, 2, 1109-1126.	0.8	75
28	Cross-talk between PI3K and estrogen in the mouse thyroid predisposes to the development of follicular carcinomas with a higher incidence in females. Oncogene, 2010, 29, 5678-5686.	2.6	51
29	GSK690693 Delays Tumor Onset and Progression in Genetically Defined Mouse Models Expressing Activated Akt. Clinical Cancer Research, 2010, 16, 486-496.	3.2	49
30	<i>Tgfbr1</i> Haploinsufficiency Is a Potent Modifier of Colorectal Cancer Development. Cancer Research, 2009, 69, 678-686.	0.4	52
31	Oncogenic Kras Requires Simultaneous PI3K Signaling to Induce ERK Activation and Transform Thyroid Epithelial Cells <i>In vivo</i> . Cancer Research, 2009, 69, 3689-3694.	0.4	118
32	Mammalian Target of Rapamycin Is the Key Effector of Phosphatidylinositol-3-OH–Initiated Proliferative Signals in the Thyroid Follicular Epithelium. Cancer Research, 2008, 68, 444-449.	0.4	46
33	A Novel Recurrent Chromosomal Inversion Implicates the Homeobox Gene <i>Dlx5</i> in T-Cell Lymphomas from Lck-Akt2 Transgenic Mice. Cancer Research, 2008, 68, 1296-1302.	0.4	31
34	Pten Loss in the Mouse Thyroid Causes Goiter and Follicular Adenomas: Insights into Thyroid Function and Cowden Disease Pathogenesis. Cancer Research, 2007, 67, 959-966.	0.4	104
35	Thyroid-Stimulating Hormone–Initiated Proliferative Signals Converge <i>In vivo</i> on the mTOR Kinase without Activating AKT. Cancer Research, 2007, 67, 8002-8006.	0.4	72
36	Endometrial Carcinoma. Annual Review of Pathology: Mechanisms of Disease, 2007, 2, 57-85.	9.6	184

#	Article	IF	CITATIONS
37	Gene expression analysis reveals a signature of estrogen receptor activation upon loss ofPten in a mouse model of endometrial cancer. Journal of Cellular Physiology, 2006, 208, 255-266.	2.0	29
38	Akt-Mediated Phosphorylation and Activation of Estrogen Receptor α Is Required for Endometrial Neoplastic Transformation in Pten+/â^' Mice. Cancer Research, 2006, 66, 3375-3380.	0.4	90
39	The deficiency of Akt1 is sufficient to suppress tumor development in Pten+/- mice. Genes and Development, 2006, 20, 1569-1574.	2.7	229
40	Somatic Acquisition and Signaling of <emph type="ITAL">TGFBR1</emph> *6A in Cancer. JAMA - Journal of the American Medical Association, 2005, 294, 1634.	3.8	87
41	Positive feedback regulation between AKT activation and fatty acid synthase expression in ovarian carcinoma cells. Oncogene, 2005, 24, 3574-3582.	2.6	169
42	Class reunion: PTEN joins the nuclear crew. Oncogene, 2005, 24, 7394-7400.	2.6	99
43	Somatic Induction of Pten Loss in a Preclinical Astrocytoma Model Reveals Major Roles in Disease Progression and Avenues for Target Discovery and Validation. Cancer Research, 2005, 65, 5172-5180.	0.4	81
44	Activation of AKT Kinases in Cancer: Implications for Therapeutic Targeting. Advances in Cancer Research, 2005, 94, 29-86.	1.9	687
45	Role of Dok-1 and Dok-2 in Leukemia Suppression. Journal of Experimental Medicine, 2004, 200, 1689-1695.	4.2	82
46	In vivo adenovirus-mediated gene transduction into mouse endometrial glands: a novel tool to model endometrial cancer in the mouse. Gynecologic Oncology, 2004, 94, 713-718.	0.6	17
47	Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development (Cambridge), 2004, 131, 3805-3819.	1.2	587
48	Pten Dose Dictates Cancer Progression in the Prostate. PLoS Biology, 2003, 1, e59.	2.6	593
49	PTEN in Neural Precursor Cells: Regulation of Migration, Apoptosis, and Proliferation. Molecular and Cellular Neurosciences, 2002, 20, 21-29.	1.0	120
50	Transcriptional Regulation of the Human Tumor Suppressor p14ARF by E2F1, E2F2, E2F3, and Sp1-like Factors. Biochemical and Biophysical Research Communications, 2002, 291, 1138-1145.	1.0	48
51	PTEN and TNF-α regulation of the intestinal-specific Cdx-2 homeobox gene through a PI3K, PKB/Akt, and NF-κB–dependent pathway. Gastroenterology, 2002, 123, 1163-1178.	0.6	121
52	The ETS Protein MEF Plays a Critical Role in Perforin Gene Expression and the Development of Natural Killer and NK-T Cells. Immunity, 2002, 17, 437-449.	6.6	173
53	Activation of Akt/Protein Kinase B Overcomes a G 2 /M Cell Cycle Checkpoint Induced by DNA Damage. Molecular and Cellular Biology, 2002, 22, 7831-7841.	1.1	263
54	Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nature Genetics, 2001, 27, 222-224.	9.4	458

ANTONIO DI CRISTOFANO

#	Article	IF	CITATIONS
55	Phosphoinositide 3-Kinase–Dependent Membrane Recruitment of P62dok Is Essential for Its Negative Effect on Mitogen-Activated Protein (Map) Kinase Activation. Journal of Experimental Medicine, 2001, 194, 265-274.	4.2	63
56	P62dok, a Negative Regulator of Ras and Mitogen-Activated Protein Kinase (Mapk) Activity, Opposes Leukemogenesis by P210bcr-abl. Journal of Experimental Medicine, 2001, 194, 275-284.	4.2	102
57	Mitochondrial Basis for Immune Deficiency. Journal of Experimental Medicine, 2000, 191, 2197-2208.	4.2	100
58	The Multiple Roles of PTEN in Tumor Suppression. Cell, 2000, 100, 387-390.	13.5	1,064
59	Suppression of Ras-mediated NIH3T3 transformation by p19ARF does not involve alterations of cell growth properties. Oncogene, 1999, 18, 2157-2162.	2.6	13
60	Impaired Fas Response and Autoimmunity in Pten+/ Mice. Science, 1999, 285, 2122-2125.	6.0	490
61	Crystal Structure of the PTEN Tumor Suppressor. Cell, 1999, 99, 323-334.	13.5	974
62	Pten is essential for embryonic development and tumour suppression. Nature Genetics, 1998, 19, 348-355.	9.4	1,428
63	Characterization and genomic mapping of chimeric ERV9 endogenous retroviruses-host gene transcripts. Gene, 1998, 206, 77-83.	1.0	13
64	Molecular Cloning and Characterization of p56 Defines a New Family of RasGAP-binding Proteins. Journal of Biological Chemistry, 1998, 273, 4827-4830.	1.6	124
65	Mobilization of an ERV9 Human Endogenous Retroviral Element during Primate Evolution. Virology, 1995, 213, 271-275.	1.1	22
66	Characterization and genomic mapping of the ZNF80 locus: expression of this zinc-finger gene is driven by a solitary LTR of ERV9 endogenous retrovrial family. Nucleic Acids Research, 1995, 23, 2823-2830.	6.5	73
67	Identification of regulatory elements within the minimal promoter region of the human endogenous ERV9 proviruses: accurate transcription initiation is controlled by an Inr-like element. Nucleic Acids Research, 1992, 20, 4129-4136.	6.5	29
68	Structural and functional organization of the human endogenous retroviral ERV9 sequences. Virology, 1992, 191, 464-468.	1.1	34
69	Identification and characterization of novel human endogenous retroviral sequences prefentially expressed in undifferentiated embryonal carcinoma cells. Nucleic Acids Research, 1991, 19, 1513-1520.	6.5	99