Metin Gürgöze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8395871/publications.pdf

Version: 2024-02-01

		430442	476904
83	1,143	18	29
papers	citations	h-index	g-index
100	100	100	206
100	100	100	396
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	ON THE EIGENFREQUENCIES OF A CANTILEVER BEAM WITH ATTACHED TIP MASS AND A SPRING-MASS SYSTEM. Journal of Sound and Vibration, 1996, 190, 149-162.	2.1	105
2	A note on the vibrations of restrained beams and rods with point masses. Journal of Sound and Vibration, 1984, 96, 461-468.	2.1	83
3	Optimal positioning of dampers in multi-body systems. Journal of Sound and Vibration, 1992, 158, 517-530.	2.1	80
4	On the approximate determination of the fundamental frequency of a restrained cantilever beam carrying a tip heavy body. Journal of Sound and Vibration, 1986, 105, 443-449.	2.1	39
5	ON THE FREQUENCY RESPONSE FUNCTION OF A DAMPED CANTILEVER SIMPLY SUPPORTED IN-SPAN AND CARRYING A TIP MASS. Journal of Sound and Vibration, 2002, 255, 489-500.	2.1	31
6	On the representation of a cantilevered beam carrying a tip mass by an equivalent spring–mass system. Journal of Sound and Vibration, 2005, 282, 538-542.	2.1	31
7	Dynamic response of a viscously damped cantilever with a viscous end condition. Journal of Sound and Vibration, 2006, 298, 132-153.	2.1	30
8	On the eigenfrequencies of a cantilevered beam with a tip mass and in-span support. Computers and Structures, 1995, 56, 85-92.	2.4	27
9	A note on the vibrations of a restrained cantilever beam carrying a heavy tip body. Journal of Sound and Vibration, 1986, 106, 533-536.	2.1	26
10	ON THE EFFECT OF AN ATTACHED SPRING-MASS SYSTEM ON THE FREQUENCY SPECTRUM OF A CANTILEVERED BEAM. Journal of Sound and Vibration, 1996, 195, 163-168.	2.1	24
11	On the vibrations of restrained beams and rods with heavy masses. Journal of Sound and Vibration, 1985, 100, 588-589.	2.1	23
12	On the eigencharacteristics of a cantilevered visco-elastic beam carrying a tip mass and its representation by a spring-damper-mass system. Journal of Sound and Vibration, 2007, 301, 420-426.	2.1	23
13	On the eigenfrequencies of cantilevered beams carrying a tip mass and spring-mass in-span. International Journal of Mechanical Sciences, 1996, 38, 1295-1306.	3.6	19
14	On the dynamic stability of a pre-twisted beam subject to a pulsating axial load. Journal of Sound and Vibration, 1985, 102, 415-422.	2.1	18
15	Longitudinal vibrations of a double-rod system coupled by springs and dampers. Journal of Sound and Vibration, 2004, 276, 419-430.	2.1	18
16	On the eigenfrequencies of a cantilever beam carrying a tip spring–mass system with mass of the helical spring considered. Journal of Sound and Vibration, 2005, 282, 1221-1230.	2.1	18
17	Parametric vibrations of a restrained beam with an end mass under displacement excitation. Journal of Sound and Vibration, 1986, 108, 73-84.	2.1	16
18	TRANSVERSE VIBRATIONS OF A FLEXIBLE BEAM SLIDING THROUGH A PRISMATIC JOINT. Journal of Sound and Vibration, 1999, 223, 467-482.	2.1	16

#	Article	IF	Citations
19	On laterally vibrating beams carrying tip masses, coupled by several double spring–mass systems. Journal of Sound and Vibration, 2004, 269, 431-438.	2.1	16
20	ON THE SENSITIVITIES OF THE EIGENVALUES OF A VISCOUSLY DAMPED CANTILEVER CARRYING A TIP MASS. Journal of Sound and Vibration, 1998, 216, 215-225.	2.1	15
21	ON THE EIGENVALUES OF VISCOUSLY DAMPED BEAMS, CARRYING HEAVY MASSES AND RESTRAINED BY LINEAR AND TORSIONAL SPRINGS. Journal of Sound and Vibration, 1997, 208, 153-158.	2.1	13
22	ON THE EIGENVALUES OF A VISCOUSLY DAMPED CANTILEVER CARRYING A TIP MASS. Journal of Sound and Vibration, 1998, 216, 309-314.	2.1	13
23	Parametric vibrations of a viscoelastic beam (Maxwell model) under steady axial load and transverse displacement excitation at one end. Journal of Sound and Vibration, 1987, 115, 329-338.	2.1	12
24	On the eigencharacteristics of multi-step beams carrying a tip mass subjected to non-homogeneous external viscous damping. Journal of Sound and Vibration, 2004, 272, 1113-1124.	2.1	12
25	LUMPED PARAMETER REPRESENTATION OF A LONGITUDINALLY VIBRATING ELASTIC ROD VISCOUSLY DAMPED IN-SPAN. Journal of Sound and Vibration, 1998, 216, 328-336.	2.1	11
26	ON THE EIGENFREQUENCIES OF LONGITUDINALLY VIBRATING RODS CARRYING A TIP MASS AND SPRING–MASS IN-SPAN. Journal of Sound and Vibration, 1998, 216, 295-308.	2.1	11
27	LONGITUDINAL VIBRATIONS OF RODS COUPLED BY A DOUBLE SPRING-MASS SYSTEM. Journal of Sound and Vibration, 1997, 202, 748-755.	2.1	10
28	Technical Comment. Journal of Guidance, Control, and Dynamics, 1998, 21, 359-359.	1.6	10
29	Preservation of the fundamental natural frequencies of rectangular plates with mass and spring modifications. Journal of Sound and Vibration, 2004, 276, 440-448.	2.1	10
30	The influences of both offset and mass moment ofÂinertia ofÂaÂtip mass on the dynamics ofÂaÂcentrifugally stiffened visco-elastic beam. Meccanica, 2011, 46, 1401-1412.	1.2	10
31	PROPORTIONALLY DAMPED SYSTEMS SUBJECTED TO DAMPING MODIFICATIONS BY SEVERAL VISCOUS DAMPERS. Journal of Sound and Vibration, 2002, 255, 407-412.	2.1	9
32	On the eigencharacteristics of an axially vibrating viscoelastic rod carrying a tip mass and its representation by a single degree-of-freedom system. Journal of Sound and Vibration, 2006, 294, 388-396.	2.1	9
33	On the dynamical behaviour of a rotating beam. Journal of Sound and Vibration, 1990, 143, 356-363.	2.1	8
34	On the frequency equation of a combined system consisting of a simply supported beam and in-span helical spring–mass with mass of the helical spring considered. Journal of Sound and Vibration, 2006, 295, 436-449.	2.1	8
35	Another Solution to "The Finite Residual Motion of a Damped Two-Degree-of-Freedom Vibrating System". Journal of Sound and Vibration, 1994, 169, 409-410.	2.1	7
36	CONTINUOUS AND DISCRETE MODELS FOR LONGITUDINALLY VIBRATING ELASTIC RODS VISCOUSLY DAMPED IN-SPAN. Journal of Sound and Vibration, 2002, 257, 996-1006.	2.1	7

#	Article	IF	Citations
37	On the eigencharacteristics of multi-step rods carrying a tip mass subjected to non-homogeneous external viscous damping. Journal of Sound and Vibration, 2003, 267, 355-365.	2.1	7
38	Bifurcation and stability analysis of a rotating beam. Quarterly of Applied Mathematics, 1993, 51, 701-711.	0.5	6
39	A novel formulation of the receptance matrix of non-proportionally damped dynamic systems. Journal of Sound and Vibration, 2003, 264, 733-740.	2.1	6
40	ALTERNATIVE FORMULATIONS OF THE FREQUENCY EQUATION OF LONGITUDINALLY VIBRATING RODS COUPLED BY A DOUBLE SPRING–MASS SYSTEM. Journal of Sound and Vibration, 1997, 208, 331-338.	2.1	5
41	Mechanical systems with a single viscous damper subject to a constraint equation. Computers and Structures, 1999, 70, 299-303.	2.4	5
42	On clamped-free beams subject to a constant direction force at an intermediate point. Journal of Sound and Vibration, 1991, 148, 147-153.	2.1	4
43	Forced Response of Uniform n-Mass Oscillators, and an Interesting Series. Journal of Sound and Vibration, 1994, 173, 283-288.	2.1	4
44	On the flexural vibrations of elastic manipulators with prismatic joints. Computers and Structures, 1997, 62, 897-908.	2.4	4
45	IDENTIFYING NODES AND ANTI-NODES OF A LONGITUDINALLY VIBRATING ROD RESTRAINED BY A LINEAR SPRING IN-SPAN. Journal of Sound and Vibration, 1999, 219, 550-557.	2.1	4
46	Consideration of the masses of helical springs in forced vibrations of damped combined systems. Mechanics Research Communications, 2011, 38, 239-243.	1.0	4
47	On the consideration of the masses of helical springs in damped combined systems consisting of two continua. Structural Engineering and Mechanics, 2008, 28, 167-188.	1.0	4
48	Ein Beitrag zum dynamischen Verhalten der Kurvengetriebe mit Schwinghebel. Ingenieur-Archiv, 1982, 51, 311-323.	0.6	3
49	Influence of stiffening on the stability of non-conservative mechanical systems. Journal of Sound and Vibration, 1989, 131, 164-167.	2.1	3
50	On the influence of parameter variations upon the eigenfrequencies of a mechanical system. Journal of Sound and Vibration, 1990, 141, 167-173.	2.1	3
51	LETTER TO THE EDITOR: ON THE EFFECT OF AN ARBITRARILY LOCATED MASS ON THE LONGITUDINAL VIBRATIONS OF A BAR. Journal of Sound and Vibration, 1996, 194, 751-756.	2.1	3
52	On the slightly damped uniform n-mass oscillator. Computers and Structures, 1996, 59, 797-803.	2.4	3
53	COMMENTS ON "FAST EIGENVALUE SENSITIVITY CALCULATIONS FOR SPECIAL STRUCTURES OF SYSTEM MATRIX DERIVATIVES―(WITH AUTHORS' REPLY). Journal of Sound and Vibration, 1998, 212, 365-369.	2.1	3
54	Comments on a Technical Note by C.A. Rossit and P.A.A. Laura. Ocean Engineering, 2002, 29, 1725-1729.	1.9	3

#	Article	IF	CITATIONS
55	On the "modes―of non-homogeneously damped rods consisting of two parts. Journal of Sound and Vibration, 2003, 260, 357-367.	2.1	3
56	On a determinant formula used for the derivation of frequency equations of combined systems. Journal of Sound and Vibration, 2003, 265, 1111-1115.	2.1	3
57	On the Formulation of Lagrange's Equations with Respect to Moving Coordinate Systems: Application to a Point Mass Vibrating on a Rotating Base. International Journal of Mechanical Engineering Education, 2006, 34, 263-272.	0.6	3
58	On the vibrations of a rotating cantilever. Journal of Sound and Vibration, 1986, 110, 529-531.	2.1	2
59	Approximate determination of fundamental frequencies of cantilever beams with resilient roots. Journal of Sound and Vibration, 1989, 134, 521-525.	2.1	2
60	On the static buckling of a Petterson-König beam in a subtangential range. Journal of Sound and Vibration, 1989, 131, 527-532.	2.1	2
61	NÃĦerungsformel für die Grundfrequenz des Petterson-Königschen Stabes. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 1990, 70, 403-407.	0.9	2
62	On the Frequency Equations of Combined Systems. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 1996, 76, 538-539.	0.9	2
63	Sensitivitäder Eigenwerte eines gedänpften Euler-Bernoulli-Balkens in Bezug auf Dänpfergrößen. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 1997, 77, 235-237.	0.9	2
64	Application of Some Results on Proportionally Damped Systems to a Uniform <i>N</i> -mass Oscillator. International Journal of Mechanical Engineering Education, 2003, 31, 76-85.	0.6	2
65	On some relationships between the eigenfrequencies of torsional vibrational systems containing lumped elements. Journal of Sound and Vibration, 2006, 290, 1322-1332.	2.1	2
66	On the eigencharacteristics of a centrifugally stiffened, visco-elastic beam. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2009, 223, 1767-1775.	1.1	2
67	Ein Beitrag zum StabilitÄ t sverhalten einer pendelnden Kurbelschleife. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 1985, 65, 451-454.	0.9	1
68	Ein Beitrag zum dynamischen Verhalten eines rotierenden Stabes. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 1987, 67, 385-394.	0.9	1
69	Non-proportionally damped systems subjected to damping modifications by several viscous dampers. Journal of Sound and Vibration, 2004, 271, 441-452.	2.1	1
70	On a superposition method for the approximate determination of the eigenfrequencies of nonlinear conservative oscillators. Journal of Sound and Vibration, 2007, 305, 925-930.	2.1	1
71	Sensitivity Analysis of an Axially Vibrating Elastic Rod with Several Lumped Attachments. International Journal of Mechanical Engineering Education, 2014, 42, 209-232.	0.6	1
72	On the dynamics of rotating, tapered, visco-elastic beams with a heavy tip mass. Structural Engineering and Mechanics, 2013, 45, 69-93.	1.0	1

#	Article	IF	CITATIONS
73	Stability of the Vibrations of a Parameter-Excited System. Journal of Applied Mechanics, Transactions ASME, 1982, 49, 920-921.	1.1	O
74	Stabilit�tsverhalten der St�sselstange in geradgefï;½hrten Kurvengetrieben. Ingenieur-Archiv, 1985, 55, 81-89.	0.6	0
75	\tilde{A} weber die kinetische stabilit $\tilde{A}^{\mbox{\tiny {\it E}}}$ der schwinge in kurvengetrieben mit schwinge. Mechanism and Machine Theory, 1986, 21, 213-221.	2.7	O
76	On the dynamic stability of an inertia governor subjected to periodic speed fluctuations. Journal of Sound and Vibration, 1986, 107, 351-354.	2.1	0
77	Modellierung und Analyse von Kraftfahrzeugschwingungen. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 1988, 68, 555-559.	0.9	O
78	Identifying Nodes and Anti-Nodes of a Longitudinally Vibrating Elastic Rod Carrying a Lumped Mass. International Journal of Mechanical Engineering Education, 2000, 28, 297-306.	0.6	0
79	On the relationship between the fundamental matrices for different definitions of the state vector. Journal of Sound and Vibration, 2004, 272, 1110-1112.	2.1	O
80	On Various Eigenvalue Problem Formulations for Viscously Damped Linear Mechanical Systems. International Journal of Mechanical Engineering Education, 2005, 33, 235-243.	0.6	0
81	Sharing of an in-Class Experience with Lagrange Equations of the First and Second Kind for Determining Reaction Forces. International Journal of Mechanical Engineering Education, 2010, 38, 252-259.	0.6	0
82	On establishing equations of motion of mechanical vibration systems placed on moving bases. International Journal of Mechanical Engineering Education, 2017, 45, 209-227.	0.6	0
83	Alternative approach for the derivation of an eigenvalue problem for a Bernoulli-Euler beam carrying a single in-span elastic rod with a tip-mounted mass. Structural Engineering and Mechanics, 2015, 53, 1105-1126.	1.0	O