Rodrick D Lentz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8395793/publications.pdf

Version: 2024-02-01

38 papers 2,459 citations

430874 18 h-index 34 g-index

38 all docs 38 docs citations

38 times ranked 2839 citing authors

#	Article	IF	CITATIONS
1	Does Turbulent-flow Conditioning of Irrigation Water Influence Soil Chemical Processes: II. Long-term Soil and Crop Study. Communications in Soil Science and Plant Analysis, 2022, 53, 636-650.	1.4	O
2	Does Turbulent-Flow Conditioning of Irrigation Water Influence Soil Chemical Processes: I. Laboratory Results. Communications in Soil Science and Plant Analysis, 2022, 53, 651-663.	1.4	0
3	Crossâ€linked polymers increase nutrient sorption in degraded soils. Agronomy Journal, 2021, 113, 1121-1135.	1.8	1
4	Longâ€term water retention increases in degraded soils amended with crossâ€linked polyacrylamide. Agronomy Journal, 2020, 112, 2569-2580.	1.8	6
5	Biochar, Manure, and Sawdust Alter Longâ€Term Water Retention Dynamics in Degraded Soil. Soil Science Society of America Journal, 2019, 83, 1491-1501.	2.2	12
6	Temporal changes in δ180 and δ15N of nitrate nitrogen and H2O in shallow groundwater: Transit time and nitrate-source implications for an irrigated tract in southern Idaho. Agricultural Water Management, 2019, 212, 126-135.	5.6	11
7	Changes in groundwater quality and agriculture in forty years on the Twin Falls irrigation tract in southern Idaho. Journal of Soils and Water Conservation, 2018, 73, 107-119.	1.6	8
8	Mineral Fertilizer and Manure Effects on Leached Inorganic Nitrogen, Nitrate Isotopic Composition, Phosphorus, and Dissolved Organic Carbon under Furrow Irrigation. Journal of Environmental Quality, 2018, 47, 287-296.	2.0	13
9	Multi-year and multi-location soil quality and crop biomass yield responses to hardwood fast pyrolysis biochar. Geoderma, 2017, 289, 46-53.	5.1	54
10	Hardwood biochar and manure co-application to a calcareous soil. Chemosphere, 2016, 142, 84-91.	8.2	44
11	Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol. Chemosphere, 2016, 142, 145-152.	8.2	181
12	Designer, acidic biochar influences calcareous soil characteristics. Chemosphere, 2016, 142, 184-191.	8.2	79
13	Polyacrylamide and biopolymer effects on flocculation, aggregate stability, and water seepage in a silt loam. Geoderma, 2015, 241-242, 289-294.	5.1	59
14	Irrigation-Induced., 2014,,.		6
15	Biochar and Manure Effects on Net Nitrogen Mineralization and Greenhouse Gas Emissions from Calcareous Soil under Corn. Soil Science Society of America Journal, 2014, 78, 1641-1655.	2.2	82
16	Biochar and Manure Affect Calcareous Soil and Corn Silage Nutrient Concentrations and Uptake. Journal of Environmental Quality, 2014, 43, 775-775.	2.0	4
17	Manure and Fertilizer Effects on Carbon Balance and Organic and Inorganic Carbon Losses for an Irrigated Corn Field. Soil Science Society of America Journal, 2014, 78, 987-1002.	2.2	17
18	Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances. Applied Soil Ecology, 2013, 65, 65-72.	4.3	170

#	Article	IF	Citations
19	Delayed Sample Filtration and Storage Effects on Dissolved Nutrients Measured in Agricultural Runoff. Communications in Soil Science and Plant Analysis, 2013, 44, 2952-2960.	1.4	2
20	Net Nitrogen Mineralization from Past Years' Manure and Fertilizer Applications. Soil Science Society of America Journal, 2012, 76, 1005-1015.	2.2	17
21	Nitrogen Availability and Uptake by Sugarbeet in Years Following a Manure Application. International Journal of Agronomy, 2012, 2012, 1-12.	1.2	7
22	Biochar and Manure Affect Calcareous Soil and Corn Silage Nutrient Concentrations and Uptake. Journal of Environmental Quality, 2012, 41, 1033-1043.	2.0	170
23	Biochar: A Synthesis of Its Agronomic Impact beyond Carbon Sequestration. Journal of Environmental Quality, 2012, 41, 973-989.	2.0	738
24	Dairy Manure Nitrogen Availability in Eroded and Noneroded Soil for Sugarbeet Followed by Small Grains. Agronomy Journal, 2011, 103, 628-643.	1.8	20
25	Managing Runoff Water Quality from Recently Manured, Furrowâ€rrigated Fields. Soil Science Society of America Journal, 2010, 74, 1310-1319.	2.2	8
26	Nutrients in Runoff from a Furrowâ€rrigated Field after Incorporating Inorganic Fertilizer or Manure. Journal of Environmental Quality, 2010, 39, 1402-1415.	2.0	13
27	Long-Term Polyacrylamide Formulation Effects on Soil Erosion, Water Infiltration, and Yields of Furrow-Irrigated Crops. Agronomy Journal, 2009, 101, 305-314.	1.8	44
28	Toxicity of Anionic Polyacrylamide Formulations when Used for Erosion Control in Agriculture. Journal of Environmental Quality, 2009, 38, 238-247.	2.0	59
29	Acrylamide Monomer Leaching from Polyacrylamideâ€Treated Irrigation Furrows. Journal of Environmental Quality, 2008, 37, 2293-2298.	2.0	24
30	SEDIMENT AND POLYACRYLAMIDE EFFECTS ON SEEPAGE FROM CHANNELED FLOWS. Soil Science, 2007, 172, 770-789.	0.9	9
31	Polyacrylamide in Agriculture and Environmental Land Management. Advances in Agronomy, 2007, , 75-162.	5.2	308
32	Inhibiting Water Infiltration into Soils with Cross-linked Polyacrylamide: Seepage Reduction for Irrigated Agriculture. Soil Science Society of America Journal, 2007, 71, 1352-1362.	2.2	20
33	Automated System for Collecting Multiple, Sequential Samples from Soil Water Percolation Samplers under Continuous Vacuum. Communications in Soil Science and Plant Analysis, 2006, 37, 1195-1203.	1.4	6
34	Fate and Efficacy of Polyacrylamide Applied in Furrow Irrigation. Journal of Environmental Quality, 2002, 31, 661.	2.0	9
35	Fate and efficacy of polyacrylamide applied in furrow irrigation: full-advance and continuous treatments. Journal of Environmental Quality, 2002, 31, 661-70.	2.0	8
36	POLYACRYLAMIDE FOR SURFACE IRRIGATION TO INCREASE NUTRIENT-USE EFFICIENCY AND PROTECTWATER QUALITY. Communications in Soil Science and Plant Analysis, 2001, 32, 1203-1220.	1.4	27

#	Article	IF	CITATIONS
37	Polyacrylamide as an organic nitrogen source for soil microorganisms with potential effects on inorganic soil nitrogen in agricultural soil. Soil Biology and Biochemistry, 1998, 30, 1045-1052.	8.8	132
38	Polyacrylamide as a substrate for microbial amidase in culture and soil. Soil Biology and Biochemistry, 1998, 30, 1647-1654.	8.8	91