List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8395136/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB Journal, 2004, 18, 1692-1700.	0.5	673
2	Organ-specific regulation of pro-inflammatory molecules in heart, lung, and kidney following brain death. Journal of Surgical Research, 2005, 123, 118-125.	1.6	581
3	Resident Cardiac Mast Cells Degranulate and Release Preformed TNF-α, Initiating the Cytokine Cascade in Experimental Canine Myocardial Ischemia/Reperfusion. Circulation, 1998, 98, 699-710.	1.6	459
4	Angiotensin II Blockade Reverses Myocardial Fibrosis in a Transgenic Mouse Model of Human Hypertrophic Cardiomyopathy. Circulation, 2001, 103, 789-791.	1.6	352
5	Cardiac Myocytes Produce Interleukin-6 in Culture and in Viable Border Zone of Reperfused Infarctions. Circulation, 1999, 99, 546-551.	1.6	302
6	Reciprocal Regulation of Myocardial microRNAs and Messenger RNA in Human Cardiomyopathy and Reversal of the microRNA Signature by Biomechanical Support. Circulation, 2009, 119, 1263-1271.	1.6	292
7	Neutrophil induced oxidative injury of cardiac myocytes. A compartmented system requiring CD11b/CD18-ICAM-1 adherence Journal of Clinical Investigation, 1992, 90, 1335-1345.	8.2	273
8	Impaired Long-Chain Fatty Acid Oxidation and Contractile Dysfunction in the Obese Zucker Rat Heart. Diabetes, 2002, 51, 2587-2595.	0.6	263
9	Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10308-10313.	7.1	260
10	Induction of Interleukin-6 Synthesis in the Myocardium. Circulation, 1995, 92, 1866-1875.	1.6	250
11	Decreased Expression of Tumor Necrosis Factor-α in Failing Human Myocardium After Mechanical Circulatory Support. Circulation, 1999, 100, 1189-1193.	1.6	248
12	Regulation of intercellular adhesion molecule-1 (ICAM-1) in ischemic and reperfused canine myocardium Journal of Clinical Investigation, 1993, 92, 1504-1516.	8.2	213
13	Free Fatty Acids Inhibit Insulin Signaling-Stimulated Endothelial Nitric Oxide Synthase Activation Through Upregulating PTEN or Inhibiting Akt Kinase. Diabetes, 2006, 55, 2301-2310.	0.6	210
14	Neutrophil adherence to isolated adult canine myocytes. Evidence for a CD18-dependent mechanism Journal of Clinical Investigation, 1990, 85, 1497-1506.	8.2	207
15	Complement C5a, TGF-β1, and MCP-1, in Sequence, Induce Migration of Monocytes Into Ischemic Canine Myocardium Within the First One to Five Hours After Reperfusion. Circulation, 1997, 95, 684-692.	1.6	188
16	Regression of fibrosis and hypertrophy in failing myocardium following mechanical circulatory support. Journal of Heart and Lung Transplantation, 2001, 20, 457-464.	0.6	187
17	Neutrophil adherence to isolated adult cardiac myocytes. Induction by cardiac lymph collected during ischemia and reperfusion Journal of Clinical Investigation, 1992, 89, 602-609.	8.2	184
18	Coronary Microembolization: the Role of TNF- \hat{I}_{\pm} in Contractile Dysfunction. Journal of Molecular and Cellular Cardiology, 2002, 34, 51-62.	1.9	176

#	Article	IF	CITATIONS
19	Telomere attrition and Chk2 activation in human heart failure. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5378-5383.	7.1	171
20	A transgenic rabbit model for human hypertrophic cardiomyopathy. Journal of Clinical Investigation, 1999, 104, 1683-1692.	8.2	171
21	Cytokines and the Microcirculation in Ischemia and Reperfusion. Journal of Molecular and Cellular Cardiology, 1998, 30, 2567-2576.	1.9	168
22	Adherence of neutrophils to canine cardiac myocytes in vitro is dependent on intercellular adhesion molecule-1 Journal of Clinical Investigation, 1991, 88, 1216-1223.	8.2	150
23	Induction of Monocyte Chemoattractant Protein-1 in the Small Veins of the Ischemic and Reperfused Canine Myocardium. Circulation, 1997, 95, 693-700.	1.6	147
24	Activation of cardiac Cdk9 represses PGC-1 and confers a predisposition to heart failure. EMBO Journal, 2004, 23, 3559-3569.	7.8	145
25	MicroRNA-9 inhibits hyperglycemia-induced pyroptosis in human ventricular cardiomyocytes by targeting ELAVL1. Biochemical and Biophysical Research Communications, 2016, 471, 423-429.	2.1	113
26	Rad GTPase Deficiency Leads to Cardiac Hypertrophy. Circulation, 2007, 116, 2976-2983.	1.6	105
27	Molecular evidence for induction of intracellular adhesion molecule-1 in the viable border zone associated with ischemia-reperfusion injury of the dog heart Circulation, 1994, 89, 2736-2746.	1.6	83
28	Degree of cardiac fibrosis and hypertrophy at time of implantation predicts myocardial improvement during left ventricular assist device support. Journal of Heart and Lung Transplantation, 2004, 23, 36-42.	0.6	76
29	Reversal of secondary pulmonary hypertension by axial and pulsatile mechanical circulatory support. Journal of Heart and Lung Transplantation, 2010, 29, 195-200.	0.6	76
30	Mechanical Unloading Promotes Myocardial Energy Recovery in Human Heart Failure. Circulation: Cardiovascular Genetics, 2014, 7, 266-276.	5.1	76
31	Inhibitory Cardiac Transcription Factor, SRF-N, Is Generated by Caspase 3 Cleavage in Human Heart Failure and Attenuated by Ventricular Unloading. Circulation, 2003, 108, 407-413.	1.6	74
32	MicroRNA-126 overexpression rescues diabetes-induced impairment in efferocytosis of apoptotic cardiomyocytes. Scientific Reports, 2016, 6, 36207.	3.3	67
33	Full Expression of Cardiomyopathy Is Partly Dependent on B ells: AÂPathway That Involves Cytokine Activation, Immunoglobulin Deposition, and Activation of Apoptosis. Journal of the American Heart Association, 2016, 5, .	3.7	67
34	Cardiolipin-protein complexes and initiation of complement activation after coronary artery occlusion Circulation Research, 1994, 75, 546-555.	4.5	63
35	Role of early reperfusion in the induction of adhesion molecules and cytokines in previously ischemic myocardium. Molecular and Cellular Biochemistry, 1995, 147, 5-12.	3.1	63
36	Enhanced Cardiac Regenerative Ability of Stem Cells After Ischemia-Reperfusion Injury. Journal of the American College of Cardiology, 2015, 66, 2214-2226.	2.8	60

#	Article	IF	CITATIONS
37	The implications for cardiac recovery of left ventricular assist device support on myocardial collagen content. American Journal of Surgery, 2000, 180, 498-502.	1.8	56
38	Role of mast cells and their mediators in failing myocardium under mechanical ventricular support. Journal of Heart and Lung Transplantation, 2004, 23, 709-715.	0.6	56
39	Plasma neurohormone levels correlate with left ventricular functional and morphological improvement in LVAD patients1. Journal of Surgical Research, 2005, 123, 25-32.	1.6	56
40	Regulation of ICAM-1 and IL-6 in Myocardial Ischemia: Effect of Reperfusion a. Annals of the New York Academy of Sciences, 1994, 723, 258-270.	3.8	55
41	Inhibition of hyaluronan synthesis attenuates pulmonary hypertension associated with lung fibrosis. British Journal of Pharmacology, 2017, 174, 3284-3301.	5.4	52
42	Decorin-mediated Transforming Growth Factor-β Inhibition Ameliorates Adverse Cardiac Remodeling. Journal of Heart and Lung Transplantation, 2007, 26, 34-40.	0.6	51
43	Freshly isolated mitochondria from failing human hearts exhibit preserved respiratory function. Journal of Molecular and Cellular Cardiology, 2014, 68, 98-105.	1.9	49
44	AIBP Limits Angiogenesis Through Î ³ -Secretase-Mediated Upregulation of Notch Signaling. Circulation Research, 2017, 120, 1727-1739.	4.5	49
45	High proportion of patients with end-stage heart failure regardless of aetiology demonstrates anti-cardiac antibody deposition in failing myocardium: humoral activation, a potential contributor of disease progression. European Heart Journal, 2014, 35, 1061-1068.	2.2	41
46	Rnd3/RhoE Modulates Hypoxia-Inducible Factor 1α/Vascular Endothelial Growth Factor Signaling by Stabilizing Hypoxia-Inducible Factor 1α and Regulates Responsive Cardiac Angiogenesis. Hypertension, 2016, 67, 597-605.	2.7	40
47	Revascularization and ventricular restoration in patients with ischemic heart failure: the STICH trial. Current Opinion in Cardiology, 2003, 18, 454-457.	1.8	38
48	Fibronectin fragments modulate monocyte VLA-5 expression and monocyte migration. Journal of Clinical Investigation, 1999, 104, 419-430.	8.2	38
49	Mechanical unloading of the heart activates the calpain system. Journal of Molecular and Cellular Cardiology, 2007, 42, 449-452.	1.9	36
50	Mechanical Unloading of the Failing Human Heart Fails to Activate the Protein Kinase B/Akt/Glycogen Synthase Kinase-3β Survival Pathway. Cardiology, 2003, 100, 17-22.	1.4	33
51	Molecular and Cellular Correlates of Cardiac Function in End-Stage DCM. JACC: Cardiovascular Imaging, 2014, 7, 441-452.	5.3	32
52	Inducible Lung Epithelial Resistance Requires Multisource Reactive Oxygen Species Generation To Protect against Viral Infections. MBio, 2018, 9, .	4.1	32
53	Unsaturated aminophospholipids are preferentially retained by the fast skeletal muscle CaATPase during detergent solubilization. Archives of Biochemistry and Biophysics, 1991, 286, 346-352.	3.0	31
54	A specifically designed nanoconstruct associates, internalizes, traffics in cardiovascular cells, and accumulates in failing myocardium: a new strategy for heart failure diagnostics and therapeutics. European Journal of Heart Failure, 2016, 18, 169-178.	7.1	31

#	Article	IF	CITATIONS
55	Rapamycin nanoparticles localize in diseased lung vasculature and prevent pulmonary arterial hypertension. International Journal of Pharmaceutics, 2017, 524, 257-267.	5.2	31
56	The Use of Continuous Milrinone Therapy as Bridge to Transplant Is Safe in Patients With Short Waiting Times. Journal of Cardiac Failure, 2008, 14, 839-843.	1.7	27
57	Somatostatin receptor gene transfer inhibits established pancreatic cancer xenografts. Journal of Surgical Research, 2003, 115, 41-47.	1.6	26
58	Decreased Left Ventricular Ejection Fraction in Transgenic Mice Expressing Mutant Cardiac Troponin T-Q92, Responsible for Human Hypertrophic Cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2000, 32, 365-374.	1.9	25
59	The Role of B-Cells in Heart Failure. Methodist DeBakey Cardiovascular Journal, 2021, 9, 15.	1.0	25
60	Mast Cell-Derived Cathepsin g: A Possible Role in The Adverse Remodeling of The Failing Human Heart. Journal of Surgical Research, 2007, 140, 199-203.	1.6	24
61	Cellular Evidence of Reverse Cardiac Remodeling Induced by Cardiac Resynchronization Therapy. Congestive Heart Failure, 2011, 17, 140-146.	2.0	22
62	Combination of angiotensin II and l-NG-nitroarginine methyl ester exacerbates mitochondrial dysfunction and oxidative stress to cause heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H667-H680.	3.2	22
63	Localizing and Quantifying Ablation Lesions in the Left Ventricle by Myocardial Contrast Echocardiography. Journal of Cardiovascular Electrophysiology, 2004, 15, 1078-1087.	1.7	21
64	Therapeutic plasma exchange a potential strategy for patients with advanced heart failure. Journal of Clinical Apheresis, 2010, 25, 323-330.	1.3	21
65	Quantitative Changes in Mast Cell Populations After Left Ventricular Assist Device Implantation. ASAIO Journal, 2005, 51, 275-280.	1.6	19
66	Lack of NF-κB1 (p105/p50) attenuates unloading-induced downregulation of PPARα and PPARα-regulated gene expression in rodent heart. Cardiovascular Research, 2007, 74, 133-139.	3.8	18
67	Recurrent Device Thrombi During Mechanical Circulatory Support With an Axial-flow Pump Is a Treatable Condition and Does Not Preclude Successful Long-term Support. Journal of Heart and Lung Transplantation, 2007, 26, 200-203.	0.6	18
68	Time-Dependent Loss of Mac-1 from Infiltrating Neutrophils in the Reperfused Myocardium. Journal of Immunology, 2000, 164, 2752-2758.	0.8	17
69	Increased Expression of Stem Cell Factor and Its Receptor After Left Ventricular Assist Device Support: A Potential Novel Target for Therapeutic Interventions in Heart Failure. Journal of Heart and Lung Transplantation, 2008, 27, 701-709.	0.6	16
70	The Role of Mast Cells After Solid Organ Transplantation. Transplantation, 2008, 85, 1365-1371.	1.0	16
71	Interaction between isolated human myocardial mast cells and cultured fibroblasts1. Journal of Surgical Research, 2004, 118, 66-70.	1.6	13
72	Functionally redundant control of cardiac hypertrophic signaling by inositol 1,4,5-trisphosphate receptors. Journal of Molecular and Cellular Cardiology, 2017, 112, 95-103.	1.9	12

#	Article	IF	CITATIONS
73	Small molecule disruption of G protein Î ² Î ³ subunit signaling reprograms human macrophage phenotype and prevents autoimmune myocarditis in rats. PLoS ONE, 2018, 13, e0200697.	2.5	11
74	Phagocytes in Ischemia Injury. Annals of the New York Academy of Sciences, 1997, 832, 243-265.	3.8	9
75	Mast cell burden and reticulin fibrosis in the myeloproliferative neoplasms: A computer-assisted image analysis study. Pathology Research and Practice, 2009, 205, 634-638.	2.3	9
76	Molecular, Cellular, and Functional Characterization of Myocardial Regions in Hypertrophic Cardiomyopathy. Circulation: Cardiovascular Imaging, 2012, 5, 419-422.	2.6	8
77	Differential Mitochondrial Function in Remodeled Right and Nonremodeled Left Ventricles in Pulmonary Hypertension. Journal of Cardiac Failure, 2016, 22, 73-81.	1.7	8
78	Apicoaortic conduit in a patient with severe hemolysis after three aortic valve replacements. Journal of Thoracic and Cardiovascular Surgery, 2004, 127, 270-272.	0.8	6
79	Placement of a left ventricular assist device in a patient with dextrocardia. Journal of Heart and Lung Transplantation, 2005, 24, 338-339.	0.6	6
80	Standardized extracts from black bean coats (Phaseolus vulgaris L.) prevent adverse cardiac remodeling in a murine model of non-ischemic cardiomyopathy. RSC Advances, 2015, 5, 90858-90865.	3.6	6
81	Fluorescence imaging microscopy of cellular markers in ischemic vs non-ischemic cardiomyopathy after left ventricular unloading. Journal of Heart and Lung Transplantation, 2005, 24, 454-461.	0.6	5
82	Efficacy of sustained delivery of GC-1 from a Nanofluidic system in a spontaneously obese non-human primate: a case study. Biomedical Microdevices, 2018, 20, 49.	2.8	5
83	Mitochondrial Hyperacetylation Contributes with Ventricular Dysfunction as Consequence of SIRT3 Deficiency in Obesity and Metabolic Syndrome. Journal of Cardiac Failure, 2017, 23, S39.	1.7	2
84	Vulnerable Atherosclerotic Plaque Imaging by Smallâ€Molecule Highâ€Affinity Positron Emission Tomography Radiopharmaceutical. Advanced Therapeutics, 2019, 2, 1900005.	3.2	2
85	STK35 Gene Therapy Attenuates Endothelial Dysfunction and Improves Cardiac Function in Diabetes. Frontiers in Cardiovascular Medicine, 2021, 8, 798091.	2.4	2
86	Endothelial Dysfunction-related Neurological Bleeds with Continuous Flow-Left Ventricular Assist Devices Measured by Digital Thermal Monitor. ASAIO Journal, 2021, 67, 561-566.	1.6	1
87	RNA polymerase II C-terminal domain kinases in heart failure. Journal of Cardiac Failure, 2003, 9, S4.	1.7	0
88	Reversal of cardiac fibrosis following LVAD implantation: the cardiac mast cell. Journal of Cardiac Failure, 2003, 9, S7.	1.7	0
89	The Role of Inflammation in Cardiac Function and Repair. Progress in Experimental Cardiology, 2003, , 19-28.	0.0	0
90	Atrioventricular fibrous ring disruption promotes ventricular preexcitation in a mouse model of Wolff-Parkinson-white syndrome. Heart Rhythm, 2005, 2, S71.	0.7	0

#	Article	IF	CITATIONS
91	Myocardial Contrast Echocardiography of Radiofrequency Ablation Lesions. , 2006, Suppl, 6689-92.		Ο
92	Characterization of a Non-Surgical Mouse Model of Acute Non-Ischemic Cardiomyopathy. Journal of Cardiac Failure, 2009, 15, S22-S23.	1.7	0
93	Heart Failure Research: Translating Basic Science Into Therapies. Methodist DeBakey Cardiovascular Journal, 2009, 5, 38-41.	1.0	0
94	Mitochondrial Respiratory Capacity in Diabetic Heart Failure Patients. Journal of Cardiac Failure, 2010, 16, S37.	1.7	0
95	Intact T and B Cell Responses Are Required for Full Expression of Acute Non-Ischemic Cardiomyopathy. Journal of Cardiac Failure, 2011, 17, S2.	1.7	0
96	Full Expression of Acute Non-Ischemic Cardiomyopathy in a Murine Model is Dependent on Intact B Cell Function. Journal of Cardiac Failure, 2012, 18, S2.	1.7	0
97	B-Cell Reconstitution in a SCID Mouse Restores CMP Phenotype. Journal of Cardiac Failure, 2013, 19, S52.	1.7	0
98	Early Changes of Allograft Mass as Evidenced by Cardiac Magnetic Resonance (CMR) Imaging Technique in a Cohort of Post Heart Transplant Patients in the Current Era of Immunosuppression. Journal of Cardiac Failure, 2014, 20, S76-S77.	1.7	0
99	Serum Concentrations of Heme Oxigenase-1 are Reduced in Patients with Acute Heart Failure and Preserved Ejection Fraction. Journal of Cardiac Failure, 2015, 21, S29.	1.7	0
100	Temporal Assessment of Endothelial to Mesenchymal Transition as a Contributor to Fibrosis in a Mouse Model of Heart Failure. Journal of Cardiac Failure, 2015, 21, S2.	1.7	0
101	Evidence of Endothelial to Mesenchymal Transition (EndMT) in the Clinically Non-Failing Left Ventricles (CNFL). Journal of Cardiac Failure, 2016, 22, S85-S86.	1.7	0
102	Aging in Heart Transplant: Gene Expression and Molecular Mechanisms. Journal of Cardiac Failure, 2016, 22, S84.	1.7	0
103	Genetic Determinants of Allograft Hypertrophy- A Human Myocardial Biopsy Study. Journal of Cardiac Failure, 2019, 25, S110.	1.7	0
104	Yamanaka Factors as Drivers of Recovery in a Mouse Model of Heart Failure. Journal of Cardiac Failure, 2019, 25, S112.	1.7	0
105	Endothelial to Mesenchymal Transition and the Reverse Contributes to Heart Failure and Recovery Thereafter. Journal of Cardiac Failure, 2020, 26, S98.	1.7	0
106	Myocardial reperfusion: A State of Inflammation. , 2001, , 93-101.		0