
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8395059/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The crystal structure of the bacterial chaperonIn GroEL at 2.8 Ã Nature, 1994, 371, 578-586.                                                                            | 13.7 | 1,363     |
| 2  | A Virulence Locus of Pseudomonas aeruginosa Encodes a Protein Secretion Apparatus. Science, 2006,<br>312, 1526-1530.                                                    | 6.0  | 984       |
| 3  | Protein production and purification. Nature Methods, 2008, 5, 135-146.                                                                                                  | 9.0  | 763       |
| 4  | Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA.<br>Nature, 2002, 417, 971-974.                                           | 13.7 | 407       |
| 5  | The three-dimensional structure of trp repressor. Nature, 1985, 317, 782-786.                                                                                           | 13.7 | 386       |
| 6  | Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography. Nature Communications, 2020, 11, 3202.              | 5.8  | 334       |
| 7  | Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors.<br>Nature Communications, 2021, 12, 743.                              | 5.8  | 297       |
| 8  | Crystal structure of Nsp15 endoribonuclease <scp>NendoU</scp> from <scp>SARS oV</scp> â€2. Protein<br>Science, 2020, 29, 1596-1605.                                     | 3.1  | 294       |
| 9  | Crystal structure of the TSP-1 type 1 repeats. Journal of Cell Biology, 2002, 159, 373-382.                                                                             | 2.3  | 249       |
| 10 | A Family of LIC Vectors for High-Throughput Cloning and Purification of Proteins. Methods in<br>Molecular Biology, 2009, 498, 105-115.                                  | 0.4  | 244       |
| 11 | Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Science, 2021, 373, 931-936.                                                      | 6.0  | 173       |
| 12 | Characteristics and Crystal Structure of Bacterial Inosine-5â€~-monophosphate Dehydrogenaseâ€,‡.<br>Biochemistry, 1999, 38, 4691-4700.                                  | 1.2  | 169       |
| 13 | An expression vector tailored for large-scale, high-throughput purification of recombinant proteins.<br>Protein Expression and Purification, 2006, 47, 446-454.         | 0.6  | 161       |
| 14 | NFκB selectivity of estrogen receptor ligands revealed by comparative crystallographic analyses.<br>Nature Chemical Biology, 2008, 4, 241-247.                          | 3.9  | 149       |
| 15 | The Structural Biology Center 19ID undulator beamline: facility specifications and protein crystallographic results. Journal of Synchrotron Radiation, 2006, 13, 30-45. | 1.0  | 143       |
| 16 | Flexibility of the DNA-binding domains oftrp repressor. Proteins: Structure, Function and Bioinformatics, 1988, 3, 18-31.                                               | 1.5  | 142       |
| 17 | High-throughput protein purification and quality assessment for crystallization. Methods, 2011, 55, 12-28.                                                              | 1.9  | 138       |
| 18 | Structural Insight into the Mechanism of c-di-GMP Hydrolysis by EAL Domain Phosphodiesterases.<br>Journal of Molecular Biology, 2010, 402, 524-538.                     | 2.0  | 121       |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | High-throughput crystallography for structural genomicsâ~†. Current Opinion in Structural Biology, 2009, 19, 573-584.                                                                                                      | 2.6 | 114       |
| 20 | Biochemical and Structural Insights into Enzymatic Depolymerization of Polylactic Acid and Other Polyesters by Microbial Carboxylesterases. Biomacromolecules, 2016, 17, 2027-2039.                                        | 2.6 | 114       |
| 21 | NDMâ€1, the ultimate promiscuous enzyme: substrate recognition and catalytic mechanism. FASEB Journal, 2013, 27, 1917-1927.                                                                                                | 0.2 | 108       |
| 22 | The 60 kDa Heat Shock Proteins in the Hyperthermophilic ArchaeonSulfolobus shibatae. Journal of<br>Molecular Biology, 1995, 253, 712-725.                                                                                  | 2.0 | 105       |
| 23 | Automation of protein purification for structural genomics. Journal of Structural and Functional Genomics, 2004, 5, 111-118.                                                                                               | 1.2 | 102       |
| 24 | Taking MAD to the extreme: ultrafast protein structure determination. Acta Crystallographica<br>Section D: Biological Crystallography, 1999, 55, 1168-1173.                                                                | 2.5 | 101       |
| 25 | Profiling B cell immunodominance after SARS-CoV-2 infection reveals antibody evolution to non-neutralizing viral targets. Immunity, 2021, 54, 1290-1303.e7.                                                                | 6.6 | 101       |
| 26 | A small-molecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase. Nature<br>Chemical Biology, 2017, 13, 943-950.                                                                                    | 3.9 | 100       |
| 27 | A conformational switch controls cell wallâ€remodelling enzymes required for bacterial cell division.<br>Molecular Microbiology, 2012, 85, 768-781.                                                                        | 1.2 | 98        |
| 28 | Crystal structures of SARS-CoV-2 ADP-ribose phosphatase: from the apo form to ligand complexes.<br>IUCrJ, 2020, 7, 814-824.                                                                                                | 1.0 | 92        |
| 29 | New Antiviral Target Revealed by the Hexameric Structure of Mouse Hepatitis Virus Nonstructural<br>Protein nsp15. Journal of Virology, 2006, 80, 7909-7917.                                                                | 1.5 | 85        |
| 30 | Tipiracil binds to uridine site and inhibits Nsp15 endoribonuclease NendoU from SARS-CoV-2.<br>Communications Biology, 2021, 4, 193.                                                                                       | 2.0 | 85        |
| 31 | Structure of Apo- and Monometalated Forms of NDM-1—A Highly Potent Carbapenem-Hydrolyzing<br>Metallo-β-Lactamase. PLoS ONE, 2011, 6, e24621.                                                                               | 1.1 | 84        |
| 32 | SARS-CoV-2 Infection Severity Is Linked to Superior Humoral Immunity against the Spike. MBio, 2021, 12, .                                                                                                                  | 1.8 | 81        |
| 33 | The Structures of the Thrombospondin-1 N-Terminal Domain and Its Complex with a Synthetic Pentameric Heparin. Structure, 2006, 14, 33-42.                                                                                  | 1.6 | 80        |
| 34 | Characterization of a <i>Bacillus subtilis</i> transporter for petrobactin, an anthrax stealth<br>siderophore. Proceedings of the National Academy of Sciences of the United States of America, 2009,<br>106, 21854-21859. | 3.3 | 80        |
| 35 | Towards Fully Automated Structure-based Function Prediction in Structural Genomics: A Case Study.<br>Journal of Molecular Biology, 2007, 367, 1511-1522.                                                                   | 2.0 | 79        |
| 36 | The structure of the <i>yrdC</i> gene product from <i>Escherichia coli</i> reveals a new fold and suggests a role in RNA binding. Protein Science, 2000, 9, 2557-2566.                                                     | 3.1 | 74        |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Three conformations of an archaeal chaperonin, TF55 from Sulfolobus shibatae. Journal of Molecular<br>Biology, 2000, 296, 813-819.                                                                                           | 2.0 | 74        |
| 38 | Optimization of Benzoxazole-Based Inhibitors of <i>Cryptosporidium parvum</i> Inosine<br>5′-Monophosphate Dehydrogenase. Journal of Medicinal Chemistry, 2013, 56, 4028-4043.                                                | 2.9 | 71        |
| 39 | Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae. Journal of Biological Chemistry, 2015, 290, 18678-18698.                                                               | 1.6 | 70        |
| 40 | Activity screening of environmental metagenomic libraries reveals novel carboxylesterase families.<br>Scientific Reports, 2017, 7, 44103.                                                                                    | 1.6 | 67        |
| 41 | Crystal Structure of Thermotoga maritima 0065, a Member of the IclR Transcriptional Factor Family.<br>Journal of Biological Chemistry, 2002, 277, 19183-19190.                                                               | 1.6 | 63        |
| 42 | Contributions to the NIH-NIGMS Protein Structure Initiative from the PSI Production Centers. Structure, 2008, 16, 5-11.                                                                                                      | 1.6 | 58        |
| 43 | Structure of cyclin C-associated kinase (GAK) trapped in different conformations using nanobodies.<br>Biochemical Journal, 2014, 459, 59-69.                                                                                 | 1.7 | 56        |
| 44 | Screening and Characterization of Novel Polyesterases from Environmental Metagenomes with High<br>Hydrolytic Activity against Synthetic Polyesters. Environmental Science & Technology, 2018, 52,<br>12388-12401.            | 4.6 | 56        |
| 45 | New LIC vectors for production of proteins from genes containing rare codons. Journal of Structural and Functional Genomics, 2013, 14, 135-144.                                                                              | 1.2 | 55        |
| 46 | Structural and evolutionary relationships of "AT-less―type I polyketide synthase ketosynthases.<br>Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12693-12698.                  | 3.3 | 55        |
| 47 | Structure and Recognition of Sheared Tandem G·A Base Pairs Associated with Human Centromere DNA<br>Sequence at Atomic Resolutionâ€. Biochemistry, 1999, 38, 16452-16460.                                                     | 1.2 | 54        |
| 48 | Toroidal Structure and DNA Cleavage by the CRISPR-Associated [4Fe-4S] Cluster Containing Cas4<br>Nuclease SSO0001 from <i>Sulfolobus solfataricus</i> . Journal of the American Chemical Society,<br>2013, 135, 17476-17487. | 6.6 | 52        |
| 49 | Structural basis for suppression of hypernegative DNA supercoiling by <i>E. coli</i> topoisomerase I.<br>Nucleic Acids Research, 2015, 43, 11031-11046.                                                                      | 6.5 | 52        |
| 50 | Structural Basis for Catalysis by the Mono- and Dimetalated Forms of the dapE-Encoded<br>N-succinyl-l,l-Diaminopimelic Acid Desuccinylase. Journal of Molecular Biology, 2010, 397, 617-626.                                 | 2.0 | 51        |
| 51 | Structure of the <i>ent</i> -Copalyl Diphosphate Synthase PtmT2 from <i>Streptomyces platensis</i> CB00739, a Bacterial Type II Diterpene Synthase. Journal of the American Chemical Society, 2016, 138, 10905-10915.        | 6.6 | 50        |
| 52 | Room-temperature X-ray crystallography reveals the oxidation and reactivity of cysteine residues in<br>SARS-CoV-2 3CL M <sup>pro</sup> : insights into enzyme mechanism and drug design. IUCrJ, 2020, 7,<br>1028-1035.       | 1.0 | 49        |
| 53 | A family of metal-dependent phosphatases implicated in metabolite damage-control. Nature Chemical<br>Biology, 2016, 12, 621-627.                                                                                             | 3.9 | 48        |
| 54 | Structural Insights into Substrate Selectivity and Activity of Bacterial Polyphosphate Kinases. ACS<br>Catalysis, 2018, 8, 10746-10760.                                                                                      | 5.5 | 48        |

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Conformational Cycle of the Archaeosome, a TCP1-like Chaperonin from Sulfolobus shibatae. Journal of Biological Chemistry, 1995, 270, 28818-28823.                                                                                                                | 1.6 | 47        |
| 56 | Roles of Intramolecular and Intermolecular Interactions in Functional Regulation of the Hsp70<br>J-protein Co-Chaperone Sis1. Journal of Molecular Biology, 2015, 427, 1632-1643.                                                                                 | 2.0 | 46        |
| 57 | Molecular Mechanism of Inhibition of Acid Ceramidase by Carmofur. Journal of Medicinal Chemistry, 2019, 62, 987-992.                                                                                                                                              | 2.9 | 46        |
| 58 | 2′-O methylation of RNA cap in SARS-CoV-2 captured by serial crystallography. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                                                                                       | 3.3 | 46        |
| 59 | Mitochondrial Hsp90 is a ligand-activated molecular chaperone coupling ATP binding to dimer closure through a coiled-coil intermediate. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2952-2957.                    | 3.3 | 42        |
| 60 | Transient and stabilized complexes of Nsp7, Nsp8, and Nsp12 in SARS-CoV-2 replication. Biophysical<br>Journal, 2021, 120, 3152-3165.                                                                                                                              | 0.2 | 39        |
| 61 | Cleavable C-terminal His-tag vectors for structure determination. Journal of Structural and Functional Genomics, 2010, 11, 31-39.                                                                                                                                 | 1.2 | 38        |
| 62 | A thiolâ€disulfide oxidoreductase of the <scp>G</scp> ramâ€positive pathogen<br><scp><i>C</i></scp> <i>orynebacterium diphtheriae</i> is essential for viability, pilus assembly, toxin<br>production and virulence. Molecular Microbiology, 2015, 98, 1037-1050. | 1.2 | 37        |
| 63 | Interaction of antidiabetic αâ€glucosidase inhibitors and gut bacteria αâ€glucosidase. Protein Science, 2018,<br>27, 1498-1508.                                                                                                                                   | 3.1 | 37        |
| 64 | Insights from the Structure of Mycobacterium tuberculosis Topoisomerase I with a Novel Protein<br>Fold. Journal of Molecular Biology, 2016, 428, 182-193.                                                                                                         | 2.0 | 36        |
| 65 | Predicting protein crystallization propensity from protein sequence. Journal of Structural and Functional Genomics, 2010, 11, 71-80.                                                                                                                              | 1.2 | 35        |
| 66 | Structural and Functional Analysis of Human HtrA3 Protease and Its Subdomains. PLoS ONE, 2015, 10, e0131142.                                                                                                                                                      | 1.1 | 35        |
| 67 | Mycobacterium tuberculosis IMPDH in Complexes with Substrates, Products and Antitubercular Compounds. PLoS ONE, 2015, 10, e0138976.                                                                                                                               | 1.1 | 35        |
| 68 | Structures of open (R) and close (T) states of prephenate dehydratase (PDT)—Implication of allosteric regulation by l-phenylalanine. Journal of Structural Biology, 2008, 162, 94-107.                                                                            | 1.3 | 34        |
| 69 | Crystal structure of secretory protein Hcp3 from Pseudomonas aeruginosa. Journal of Structural and Functional Genomics, 2011, 12, 21-26.                                                                                                                          | 1.2 | 34        |
| 70 | Heparin-induced cis- and trans-Dimerization Modes of the Thrombospondin-1 N-terminal Domain.<br>Journal of Biological Chemistry, 2008, 283, 3932-3941.                                                                                                            | 1.6 | 33        |
| 71 | The crystal structure of BlmI as a model for nonribosomal peptide synthetase peptidyl carrier proteins. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1210-1218.                                                                                    | 1.5 | 33        |
| 72 | Expanding Benzoxazole-Based Inosine 5′-Monophosphate Dehydrogenase (IMPDH) Inhibitor<br>Structure–Activity As Potential Antituberculosis Agents. Journal of Medicinal Chemistry, 2018, 61,<br>4739-4756.                                                          | 2.9 | 33        |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Crystal structure of <scp><i>B</i></scp> <i>acillus anthracis</i> virulence regulator<br><scp>AtxA</scp> and effects of phosphorylated histidines on multimerization and activity. Molecular<br>Microbiology, 2015, 95, 426-441.              | 1.2 | 32        |
| 74 | <i>Bacillus anthracis</i> Inosine 5â€2-Monophosphate Dehydrogenase in Action: The First Bacterial Series of Structures of Phosphate Ion-, Substrate-, and Product-Bound Complexes. Biochemistry, 2012, 51, 6148-6163.                         | 1.2 | 31        |
| 75 | A Novel Cofactor-binding Mode in Bacterial IMP Dehydrogenases Explains Inhibitor Selectivity. Journal of Biological Chemistry, 2015, 290, 5893-5911.                                                                                          | 1.6 | 31        |
| 76 | A microbial sensor for organophosphate hydrolysis exploiting an engineered specificity switch in a transcription factor. Nucleic Acids Research, 2016, 44, 8490-8500.                                                                         | 6.5 | 31        |
| 77 | Covering complete proteomes with X-ray structures: a current snapshot. Acta Crystallographica<br>Section D: Biological Crystallography, 2014, 70, 2781-2793.                                                                                  | 2.5 | 30        |
| 78 | The CDI toxin of Yersinia kristensenii is a novel bacterial member of the RNase A superfamily. Nucleic<br>Acids Research, 2017, 45, 5013-5025.                                                                                                | 6.5 | 30        |
| 79 | The CRISPR-associated Cas4 protein Pcal_0546 from Pyrobaculum calidifontis contains a [2Fe-2S] cluster: crystal structure and nuclease activity. Nucleic Acids Research, 2014, 42, 11144-11155.                                               | 6.5 | 29        |
| 80 | Structure of Calcarisporiella thermophila Hsp104 Disaggregase that Antagonizes Diverse Proteotoxic<br>Misfolding Events. Structure, 2019, 27, 449-463.e7.                                                                                     | 1.6 | 29        |
| 81 | A Disulfide Bond-forming Machine Is Linked to the Sortase-mediated Pilus Assembly Pathway in the<br>Gram-positive Bacterium Actinomyces oris. Journal of Biological Chemistry, 2015, 290, 21393-21405.                                        | 1.6 | 28        |
| 82 | Crystal Structure of Bacillus anthracis Transpeptidase Enzyme CapD. Journal of Biological Chemistry, 2009, 284, 24406-24414.                                                                                                                  | 1.6 | 27        |
| 83 | Biochemical and Structural Analysis of an Eis Family Aminoglycoside Acetyltransferase from<br><i>Bacillus anthracis</i> . Biochemistry, 2015, 54, 3197-3206.                                                                                  | 1.2 | 27        |
| 84 | In vitro reconstitution of sortase-catalyzed pilus polymerization reveals structural elements<br>involved in pilin cross-linking. Proceedings of the National Academy of Sciences of the United States<br>of America, 2018, 115, E5477-E5486. | 3.3 | 27        |
| 85 | Target highlights in <scp>CASP14</scp> : Analysis of models by structure providers. Proteins:<br>Structure, Function and Bioinformatics, 2021, 89, 1647-1672.                                                                                 | 1.5 | 27        |
| 86 | A novel transcriptional regulator of L-arabinose utilization in human gut bacteria. Nucleic Acids<br>Research, 2015, 43, gkv1005.                                                                                                             | 6.5 | 26        |
| 87 | Functional plasticity of antibacterial EndoU toxins. Molecular Microbiology, 2018, 109, 509-527.                                                                                                                                              | 1.2 | 25        |
| 88 | Allosteric inhibitors of <scp><i>Mycobacterium tuberculosis</i></scp> tryptophan synthase. Protein<br>Science, 2020, 29, 779-788.                                                                                                             | 3.1 | 25        |
| 89 | Protein Production for Structural Genomics Using E. coli Expression. Methods in Molecular Biology, 2014, 1140, 89-105.                                                                                                                        | 0.4 | 25        |
| 90 | A Novel Polyamine Allosteric Site of SpeG from Vibrio cholerae Is Revealed by Its Dodecameric<br>Structure. Journal of Molecular Biology, 2015, 427, 1316-1334.                                                                               | 2.0 | 24        |

| #   | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | A structural insight into the P1 S1 binding mode of diaminoethylphosphonic and phosphinic acids,<br>selective inhibitors of alanine aminopeptidases. European Journal of Medicinal Chemistry, 2016, 117,<br>187-196.                           | 2.6 | 24        |
| 92  | Differential Signatures of Bacterialand Mammalian IMP Dehydrogenase Enzymest. Current Medicinal<br>Chemistry, 1999, 6, 537-543.                                                                                                                | 1.2 | 24        |
| 93  | Streptococcus pneumoniaYlxR at 1.35â€Ã shows a putative new fold. Acta Crystallographica Section D:<br>Biological Crystallography, 2001, 57, 1747-1751.                                                                                        | 2.5 | 23        |
| 94  | Characterization of Transport Proteins for Aromatic Compounds Derived from Lignin: Benzoate Derivative Binding Proteins. Journal of Molecular Biology, 2012, 423, 555-575.                                                                     | 2.0 | 23        |
| 95  | Structure of a novel antibacterial toxin that exploits elongation factor Tu to cleave specific transfer<br>RNAs. Nucleic Acids Research, 2017, 45, 10306-10320.                                                                                | 6.5 | 23        |
| 96  | Investigating mycobacterial topoisomerase I mechanism from the analysis of metal and DNA substrate interactions at the active site. Nucleic Acids Research, 2018, 46, 7296-7308.                                                               | 6.5 | 23        |
| 97  | Characterization and Crystal Structure of a Nonheme Diiron Monooxygenase Involved in<br>Platensimycin and Platencin Biosynthesis. Journal of the American Chemical Society, 2019, 141,<br>12406-12412.                                         | 6.6 | 23        |
| 98  | Evolution of substrate specificity in a retained enzyme driven by gene loss. ELife, 2017, 6, .                                                                                                                                                 | 2.8 | 23        |
| 99  | Target Selection and Determination of Function in Structural Genomics. IUBMB Life, 2003, 55, 249-255.                                                                                                                                          | 1.5 | 22        |
| 100 | New aminopeptidase from "microbial dark matter―archaeon. FASEB Journal, 2015, 29, 4071-4079.                                                                                                                                                   | 0.2 | 22        |
| 101 | Convergent Evolution of the Barnase/EndoU/Colicin/RelE (BECR) Fold in Antibacterial tRNase Toxins.<br>Structure, 2019, 27, 1660-1674.e5.                                                                                                       | 1.6 | 22        |
| 102 | How Aromatic Compounds Block DNA Binding of HcaR Catabolite Regulator. Journal of Biological Chemistry, 2016, 291, 13243-13256.                                                                                                                | 1.6 | 21        |
| 103 | Resistance to Enediyne Antitumor Antibiotics by Sequestration. Cell Chemical Biology, 2018, 25, 1075-1085.e4.                                                                                                                                  | 2.5 | 21        |
| 104 | Natural separation of the acyl-CoA ligase reaction results in a non-adenylating enzyme. Nature Chemical Biology, 2018, 14, 730-737.                                                                                                            | 3.9 | 21        |
| 105 | Cell-to-cell interaction requires optimal positioning of a pilus tip adhesin modulated by gram-positive transpeptidase enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18041-18049.       | 3.3 | 21        |
| 106 | Structural and biochemical analysis of the metalloâ€Î²â€lactamase L1 from emerging pathogen<br>Stenotrophomonas maltophilia revealed the subtle but distinct diâ€metal scaffold for catalytic activity.<br>Protein Science, 2020, 29, 723-743. | 3.1 | 20        |
| 107 | The dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase from Haemophilus influenzae contains two active-site histidine residues. Journal of Biological Inorganic Chemistry, 2009, 14, 1-10.                                          | 1.1 | 19        |
| 108 | Target highlights in CASP9: Experimental target structures for the critical assessment of techniques for protein structure prediction. Proteins: Structure, Function and Bioinformatics, 2011, 79, 6-20.                                       | 1.5 | 19        |

| #   | Article                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | [7] Crystallization of protein-DNA complexes. Methods in Enzymology, 1991, 208, 82-99.                                                                                                                                                                                                       | 0.4 | 18        |
| 110 | Crystal Structures of SgcE6 and SgcC, the Two-Component Monooxygenase That Catalyzes<br>Hydroxylation of a Carrier Protein-Tethered Substrate during the Biosynthesis of the Enediyne<br>Antitumor Antibiotic C-1027 in <i>Streptomyces globisporus</i> . Biochemistry, 2016, 55, 5142-5154. | 1.2 | 18        |
| 111 | Structures of teixobactin-producing nonribosomal peptide synthetase condensation and adenylation domains. Current Research in Structural Biology, 2020, 2, 14-24.                                                                                                                            | 1.1 | 18        |
| 112 | Inhibition of the <i>dapE</i> -Encoded <i>N</i> -Succinyl- <scp>l</scp> , <scp>l</scp> -diaminopimelic Acid<br>Desuccinylase from <i>Neisseria meningitidis</i> by <scp>l</scp> -Captopril. Biochemistry, 2015, 54,<br>4834-4844.                                                            | 1.2 | 17        |
| 113 | The Dimerization Domain in DapE Enzymes Is required for Catalysis. PLoS ONE, 2014, 9, e93593.                                                                                                                                                                                                | 1.1 | 17        |
| 114 | Therapeutic genetic variation revealed in diverse Hsp104 homologs. ELife, 2020, 9, .                                                                                                                                                                                                         | 2.8 | 17        |
| 115 | Structural Evidence of a Major Conformational Change Triggered by Substrate Binding in DapE<br>Enzymes: Impact on the Catalytic Mechanism. Biochemistry, 2018, 57, 574-584.                                                                                                                  | 1.2 | 16        |
| 116 | Functional Profiling and Crystal Structures of Isothiocyanate Hydrolases Found in Gut-Associated and Plant-Pathogenic Bacteria. Applied and Environmental Microbiology, 2018, 84, .                                                                                                          | 1.4 | 16        |
| 117 | Rigid monoclonal antibodies improve detection of SARS-CoV-2 nucleocapsid protein. MAbs, 2021, 13, 1905978.                                                                                                                                                                                   | 2.6 | 16        |
| 118 | Purification of chaperonins from thermophilic bacteria and archaea. Journal of Chromatography A, 1997, 773, 131-138.                                                                                                                                                                         | 1.8 | 14        |
| 119 | The Mannitol Operon Repressor MtlR Belongs to a New Class of Transcription Regulators in Bacteria.<br>Journal of Biological Chemistry, 2009, 284, 36670-36679.                                                                                                                               | 1.6 | 14        |
| 120 | Structural and Functional Characterization of DUF1471 Domains of Salmonella Proteins SrfN,<br>YdgH/SssB, and YahO. PLoS ONE, 2014, 9, e101787.                                                                                                                                               | 1.1 | 13        |
| 121 | Conservation of the structure and function of bacterial tryptophan synthases. IUCrJ, 2019, 6, 649-664.                                                                                                                                                                                       | 1.0 | 13        |
| 122 | Substrate-Induced Allosteric Change in the Quaternary Structure of the Spermidine<br>N-Acetyltransferase SpeG. Journal of Molecular Biology, 2015, 427, 3538-3553.                                                                                                                           | 2.0 | 12        |
| 123 | EsxB, a secreted protein from <scp> <i>B</i></scp> <i>acillus anthracis</i> forms two distinct helical bundles. Protein Science, 2015, 24, 1389-1400.                                                                                                                                        | 3.1 | 12        |
| 124 | Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity. Journal of Structural Biology, 2016, 194, 18-28.                                                                                                                           | 1.3 | 12        |
| 125 | Target highlights in CASP13: Experimental target structures through the eyes of their authors.<br>Proteins: Structure, Function and Bioinformatics, 2019, 87, 1037-1057.                                                                                                                     | 1.5 | 12        |
| 126 | The crystal structures of the α-subunit of the α2β2 tetrameric Glycyl-tRNA synthetase. Journal of<br>Structural and Functional Genomics, 2012, 13, 233-239.                                                                                                                                  | 1.2 | 11        |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Sensor Domain of Histidine Kinase KinB of Pseudomonas. Journal of Biological Chemistry, 2014, 289, 12232-12244.                                                                                                                  | 1.6 | 11        |
| 128 | Structure of <i>Cryptosporidium</i> IMP dehydrogenase bound to an inhibitor with <i>in<br/>vivo</i> antiparasitic activity. Acta Crystallographica Section F, Structural Biology Communications,<br>2015, 71, 531-538.           | 0.4 | 11        |
| 129 | Target highlights from the first postâ€PSI CASP experiment (CASP12, May–August 2016). Proteins:<br>Structure, Function and Bioinformatics, 2018, 86, 27-50.                                                                      | 1.5 | 11        |
| 130 | Structural genomics and the Protein Data Bank. Journal of Biological Chemistry, 2021, 296, 100747.                                                                                                                               | 1.6 | 11        |
| 131 | Structural characterization of AtmS13, a putative sugar aminotransferase involved in<br>indolocarbazole AT2433 aminopentose biosynthesis. Proteins: Structure, Function and Bioinformatics,<br>2015, 83, 1547-1554.              | 1.5 | 10        |
| 132 | Crystal Structure of Thioesterase SgcE10 Supporting Common Polyene Intermediates in 9- and 10-Membered Enediyne Core Biosynthesis. ACS Omega, 2017, 2, 5159-5169.                                                                | 1.6 | 10        |
| 133 | Structural Insights into the Free-Standing Condensation Enzyme SgcC5 Catalyzing Ester-Bond<br>Formation in the Biosynthesis of the Enediyne Antitumor Antibiotic C-1027. Biochemistry, 2018, 57,<br>3278-3288.                   | 1.2 | 10        |
| 134 | Conserved residue His-257 of Vibrio cholerae flavin transferase ApbE plays a critical role in substrate binding and catalysis. Journal of Biological Chemistry, 2019, 294, 13800-13810.                                          | 1.6 | 10        |
| 135 | Improved integration of single-cell transcriptome and surface protein expression by LinQ-View. Cell Reports Methods, 2021, 1, 100056.                                                                                            | 1.4 | 10        |
| 136 | Enhanced crystal packing due to solvent reorganization through reductive methylation of lysine<br>residues in oxidoreductase from Streptococcus pneumoniae. Journal of Structural and Functional<br>Genomics, 2010, 11, 101-111. | 1.2 | 9         |
| 137 | Crystal Structures of the F and pSLT Plasmid TraJ N-Terminal Regions Reveal Similar Homodimeric PAS<br>Folds with Functional Interchangeability. Biochemistry, 2014, 53, 5810-5819.                                              | 1.2 | 9         |
| 138 | Crystal Structure of the Zorbamycin-Binding Protein ZbmA, the Primary Self-Resistance Element in <i>Streptomyces flavoviridis</i> ATCC21892. Biochemistry, 2015, 54, 6842-6851.                                                  | 1.2 | 9         |
| 139 | Insights into PGâ€binding, conformational change, and dimerization of the OmpA Câ€ŧerminal domains<br>from Salmonella enterica serovar Typhimurium and Borrelia burgdorferi. Protein Science, 2017, 26,<br>1738-1748.            | 3.1 | 8         |
| 140 | Structural Basis of a Thiol-Disulfide Oxidoreductase in the Hedgehog-Forming Actinobacterium<br>Corynebacterium matruchotii. Journal of Bacteriology, 2018, 200, .                                                               | 1.0 | 8         |
| 141 | Bisphosphonic acids and related compounds as inhibitors of nucleotide―and polyphosphateâ€processing<br>enzymes: A PPK1 and PPK2 case study. Chemical Biology and Drug Design, 2019, 93, 1197-1206.                               | 1.5 | 8         |
| 142 | Crystal structure of the hypothetical protein TA1238 from Thermoplasma acidophilum: a new type of helical super-bundle. Journal of Structural and Functional Genomics, 2004, 5, 231-240.                                         | 1.2 | 7         |
| 143 | Structural analysis of free and liganded forms of the Fab fragment of a high-affinity anti-cocaine antibody, h2E2. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 697-706.                       | 0.4 | 7         |
| 144 | Survey of Predictors of Propensity for Protein Production and Crystallization with Application to<br>Predict Resolution of Crystal Structures. Current Protein and Peptide Science, 2017, 19, 200-210.                           | 0.7 | 7         |

| #   | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Co-occurrence of analogous enzymes determines evolution of a novel (βα)8-isomerase sub-family after<br>non-conserved mutations in flexible loop. Biochemical Journal, 2016, 473, 1141-1152.                                                              | 1.7 | 6         |
| 146 | Structural Characterization of CalS8, a TDP-α-d-Glucose Dehydrogenase Involved in Calicheamicin<br>Aminodideoxypentose Biosynthesis. Journal of Biological Chemistry, 2015, 290, 26249-26258.                                                            | 1.6 | 5         |
| 147 | Catalytically impaired TrpA subunit of tryptophan synthase from Chlamydia trachomatis is an allosteric regulator of TrpB. Protein Science, 2021, 30, 1904-1918.                                                                                          | 3.1 | 5         |
| 148 | The Enzymatic Activity of Inosine 5′-Monophosphate Dehydrogenase May Not Be a Vulnerable Target for<br><i>Staphylococcus aureus</i> Infections. ACS Infectious Diseases, 2021, 7, 3062-3076.                                                             | 1.8 | 5         |
| 149 | Purification of chaperonins. Biomedical Applications, 1999, 722, 153-177.                                                                                                                                                                                | 1.7 | 4         |
| 150 | Structural dynamics of a methionine Î <sup>3</sup> -lyase for calicheamicin biosynthesis: Rotation of the conserved tyrosine stacking with pyridoxal phosphate. Structural Dynamics, 2016, 3, 034702.                                                    | 0.9 | 4         |
| 151 | X-ray crystal structures of the pheromone-binding domains of two quorum-hindered transcription<br>factors, YenR ofYersinia enterocoliticaand CepR2 ofBurkholderia cenocepacia. Proteins: Structure,<br>Function and Bioinformatics, 2017, 85, 1831-1844. | 1.5 | 4         |
| 152 | Sensor Domain of Histidine Kinase VxrA of Vibrio cholerae: Hairpin-Swapped Dimer and Its<br>Conformational Change. Journal of Bacteriology, 2021, 203, .                                                                                                 | 1.0 | 4         |
| 153 | 3D domain swapping in the TIM barrel of the α subunit of <i>Streptococcus pneumoniae</i> tryptophan synthase. Acta Crystallographica Section D: Structural Biology, 2020, 76, 166-175.                                                                   | 1.1 | 4         |
| 154 | Biochemical and structural studies of two tetrameric nucleoside 2′-deoxyribosyltransferases from psychrophilic and mesophilic bacteria: Insights into cold-adaptation. International Journal of Biological Macromolecules, 2021, 192, 138-150.           | 3.6 | 4         |
| 155 | An efficient chemical screening method for structure-based inhibitors to nucleic acid enzymes targeting the DNA repair-replication interface and SARS CoV-2. Methods in Enzymology, 2021, 661, 407-431.                                                  | 0.4 | 4         |
| 156 | Functional and Structural Characterization of Diverse NfsB Chloramphenicol Reductase Enzymes<br>from Human Pathogens. Microbiology Spectrum, 2022, 10, e0013922.                                                                                         | 1.2 | 3         |
| 157 | A Genomic Island of Vibrio cholerae Encodes a Three-Component Cytotoxin with Monomer and<br>Protomer Forms Structurally Similar to Alpha-Pore-Forming Toxins. Journal of Bacteriology, 2022,<br>204, e0055521.                                           | 1.0 | 3         |
| 158 | Structure of a cupin protein Plu4264 from Photorhabdus luminescens subsp. laumondii TTO1 at 1.35 Ã<br>resolution. Proteins: Structure, Function and Bioinformatics, 2015, 83, 383-388.                                                                   | 1.5 | 2         |
| 159 | Structural and biochemical insights into CRISPR RNA processing by the Cas5c ribonuclease SMU1763 from Streptococcus mutans. Journal of Biological Chemistry, 2021, 297, 101251.                                                                          | 1.6 | 2         |
| 160 | An efficient chemical screening method for structure-based inhibitors to nucleic acid enzymes<br>targeting the DNA repair-replication interface and SARS CoV-2. Methods in Enzymology, 2021, 661,<br>407-431.                                            | 0.4 | 2         |
| 161 | A novel signal transduction protein: Combination of solute binding and tandem PASâ€like sensor<br>domains in one polypeptide chain. Protein Science, 2017, 26, 857-869.                                                                                  | 3.1 | 1         |
| 162 | Oxanosine Monophosphate Is a Covalent Inhibitor of Inosine 5′-Monophosphate Dehydrogenase.<br>Chemical Research in Toxicology, 2019, 32, 456-466.                                                                                                        | 1.7 | 1         |

ANDRZEJ JOACHIMIAK

| #   | Article                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | <i>Mycobacterium tuberculosis</i> Phe-tRNA synthetase: structural insights into tRNA recognition and aminoacylation. Nucleic Acids Research, 2021, 49, 5351-5368.           | 6.5 | 1         |
| 164 | Threeâ€dimensional Domain Swapping in the α Subunit of Tryptophan Synthase. FASEB Journal, 2015, 29,<br>LB215.                                                              | 0.2 | 1         |
| 165 | Structural Insight into Allosteric Inhibition of Mycobacterium tuberculosis Tryptophan Synthase.<br>FASEB Journal, 2017, 31, 765.12.                                        | 0.2 | 1         |
| 166 | High-throughput Technologies for Structural Biology: The Protein Structure Initiative Perspective. , 2008, , 435-461.                                                       |     | 0         |
| 167 | In vitro study on energy plant R. tianschanicus×R. patientia. New Biotechnology, 2016, 33, S89.                                                                             | 2.4 | 0         |
| 168 | Fluorescence-based thermal shift data on multidrug regulator AcrR from Salmonella enterica subsp.<br>entrica serovar Typhimurium str. LT2. Data in Brief, 2016, 7, 537-539. | 0.5 | 0         |
| 169 | Aromatic claw: A new fold with high aromatic content that evades structural prediction. Protein Science, 2017, 26, 208-217.                                                 | 3.1 | 0         |
| 170 | Editorial overview: Macromolecular assemblies. Current Opinion in Structural Biology, 2019, 55, iii-v.                                                                      | 2.6 | 0         |
| 171 | Structural and biochemical analyses of human insulinâ€degrading enzyme reveal a new substrate<br>recognition mechanism. FASEB Journal, 2007, 21, A648.                      | 0.2 | 0         |
| 172 | Metagenomics ―the next structural frontier. FASEB Journal, 2010, 24, lb225.                                                                                                 | 0.2 | 0         |