Anastasia Stamatiou

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/839499/anastasia-stamatiou-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

30 478 13 21 g-index

31 578 3.8 4.05 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
30	Thermal Energy Storage Materials (TESMs)IWhat Does It Take to Make Them Fly?. <i>Crystals</i> , 2021 , 11, 1276	2.3	5
29	Experimental Characterization of Phase Change Materials for Refrigeration Processes. <i>Energies</i> , 2021 , 14, 3033	3.1	
28	Experimental Feasibility Study of a Direct Contact Latent Heat Storage Using an Ester as a Bio-Based Storage Material. <i>Energies</i> , 2021 , 14, 511	3.1	3
27	Assessment of the Thermal Properties of Aromatic Esters as Novel Phase Change Materials. <i>Crystals</i> , 2020 , 10, 919	2.3	2
26	Investigation of the Thermal Properties of Diesters from Methanol, 1-Pentanol, and 1-Decanol as Sustainable Phase Change Materials. <i>Materials</i> , 2020 , 13,	3.5	11
25	Impregnation of Lightweight Aggregate Particles with Phase Change Material for Its Use in Asphalt Mixtures. <i>Lecture Notes in Civil Engineering</i> , 2020 , 337-345	0.3	
24	Triglycerides as Novel Phase-Change Materials: A Review and Assessment of Their Thermal Properties. <i>Molecules</i> , 2020 , 25,	4.8	6
23	Comparison of Heat Transfer Enhancement Techniques in Latent Heat Storage. <i>Applied Sciences</i> (Switzerland), 2020 , 10, 5519	2.6	10
22	Modeling of solidification including supercooling effects in a fin-tube heat exchanger based latent heat storage. <i>Solar Energy</i> , 2020 , 200, 10-21	6.8	18
21	Investigating bitumen direct interaction with Tetradecane as potential phase change material for low temperature applications. <i>Road Materials and Pavement Design</i> , 2020 , 21, 2356-2363	2.6	19
20	Effects of aging on asphalt binders modified with microencapsulated phase change material. <i>Composites Part B: Engineering</i> , 2019 , 173, 107007	10	32
19	Investigation of Lactones as Innovative Bio-Sourced Phase Change Materials for Latent Heat Storage. <i>Molecules</i> , 2019 , 24,	4.8	8
18	Thermal and rheological characterization of bitumen modified with microencapsulated phase change materials. <i>Construction and Building Materials</i> , 2019 , 215, 171-179	6.7	25
17	Analysis of Bio-Based Fatty Esters PCMB Thermal Properties and Investigation of Trends in Relation to Chemical Structures. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 225	2.6	14
16	Modification of asphalt mixtures for cold regions using microencapsulated phase change materials. <i>Scientific Reports</i> , 2019 , 9, 20342	4.9	15
15	Use of Microencapsulated Phase Change Materials in Bitumen to Mitigate the Thermal Distresses in Asphalt Pavements. <i>RILEM Bookseries</i> , 2019 , 129-135	0.5	4
14	Experimental investigation on heat transfer with a Phase Change Dispersion. <i>Applied Thermal Engineering</i> , 2019 , 147, 61-73	5.8	12

LIST OF PUBLICATIONS

13	Numerical study on the effect of phase change materials on heat transfer in asphalt concrete. International Journal of Thermal Sciences, 2018, 133, 140-150	4.1	26	
12	Effective Separation of a Water in Oil Emulsion from a Direct Contact Latent Heat Storage System. <i>Energies</i> , 2018 , 11, 2264	3.1	4	
11	Quasi-stationary modelling of solidification in a latent heat storage comprising a plain tube heat exchanger. <i>Journal of Energy Storage</i> , 2018 , 20, 551-559	7.8	6	
10	Synthesis and Investigation of Thermal Properties of Highly Pure Carboxylic Fatty Esters to Be Used as PCM. <i>Applied Sciences (Switzerland)</i> , 2018 , 8, 1069	2.6	20	
9	Investigation of unbranched, saturated, carboxylic esters as phase change materials. <i>Renewable Energy</i> , 2017 , 108, 401-409	8.1	33	
8	Storage of Heat, Cold and Electricity. <i>Chimia</i> , 2015 , 69, 777-779	1.3		
7	On the Effect of the Presence of Solid Diluents during Zn Oxidation by CO2. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 1859-1869	3.9	21	
6	Syngas production from H2O and CO2 over Zn particles in a packed-bed reactor. <i>AICHE Journal</i> , 2012 , 58, 625-631	3.6	26	
5	Concentrated solar energy for thermochemically producing liquid fuels from CO2 and H2O. <i>Jom</i> , 2011 , 63, 32-34	2.1	2	
4	CO2 reduction with Zn particles in a packed-bed reactor. <i>AICHE Journal</i> , 2011 , 57, 2529-2534	3.6	9	
3	Solar Syngas Production from H2O and CO2 via Two-Step Thermochemical Cycles Based on Zn/ZnO and FeO/Fe3O4 Redox Reactions: Kinetic Analysis. <i>Energy & Energy & Energ</i>	4.1	58	
2	CO2 Splitting via Two-Step Solar Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions II: Kinetic Analysis. <i>Energy & Fuels</i> , 2009 , 23, 2832-2839	4.1	89	
1	Phase Change Material numerical simulation: enthalpy-porosity model validation against liquid fraction data from an X-ray computed tomography measurement/system. <i>Nondestructive Testing and Evaluation</i> ,1-11	2	0	