
Ã-znil Budak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8394966/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antimony alloying electrode for high-performance sodium removal: how to use a battery material not stable in aqueous media for saline water remediation. Journal of Materials Chemistry A, 2021, 9, 585-596.	5.2	11
2	Titanium Niobium Oxide Ti ₂ Nb ₁₀ O ₂₉ /Carbon Hybrid Electrodes Derived by Mechanochemically Synthesized Carbide for Highâ€Performance Lithiumâ€Ion Batteries. ChemSusChem, 2021, 14, 398-407.	3.6	15
3	Electrospun vanadium sulfide / carbon hybrid fibers obtained via one-step thermal sulfidation for use as lithium-ion battery electrodes. Journal of Power Sources, 2020, 450, 227674.	4.0	19
4	Ionic liquid-based synthesis of MXene. Chemical Communications, 2020, 56, 11082-11085.	2.2	87
5	Hybrid Anodes of Lithium Titanium Oxide and Carbon Onions for Lithiumâ€Ion and Sodiumâ€Ion Energy Storage. Energy Technology, 2020, 8, 2000679.	1.8	3
6	MXene/Activated-Carbon Hybrid Capacitive Deionization for Permselective Ion Removal at Low and High Salinity. ACS Applied Materials & amp; Interfaces, 2020, 12, 26013-26025.	4.0	91
7	Choosing the right carbon additive is of vital importance for high-performance Sb-based Na-ion batteries. Journal of Materials Chemistry A, 2020, 8, 6092-6104.	5.2	35
8	High-performance ion removal via zinc–air desalination. Electrochemistry Communications, 2020, 115, 106713.	2.3	30
9	Comparison of organic electrolytes at various temperatures for 2.8ÂV–Li-ion hybrid supercapacitors. Electrochimica Acta, 2020, 337, 135760.	2.6	15
10	Carbide-Derived Niobium Pentoxide with Enhanced Charge Storage Capacity for Use as a Lithium-Ion Battery Electrode. ACS Applied Energy Materials, 2020, 3, 4275-4285.	2.5	22
11	Understanding Interlayer Deprotonation of Hydrogen Titanium Oxide for High-Power Electrochemical Energy Storage. ACS Applied Energy Materials, 2019, 2, 3633-3641.	2.5	13
12	Vanadium (III) Oxide/Carbon Core/Shell Hybrids as an Anode for Lithiumâ€kon Batteries. Batteries and Supercaps, 2019, 2, 74-82.	2.4	10
13	In Situ Tracking of Partial Sodium Desolvation of Materials with Capacitive, Pseudocapacitive, and Battery-like Charge/Discharge Behavior in Aqueous Electrolytes. Langmuir, 2018, 34, 13132-13143.	1.6	20