Feng-Yuan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8394808/publications.pdf

Version: 2024-02-01

136740 161609 2,999 75 32 54 h-index citations g-index papers 77 77 77 1599 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Durability of anion exchange membrane water electrolyzers. Energy and Environmental Science, 2021, 14, 3393-3419.	15.6	213
2	Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy. International Journal of Hydrogen Energy, 2015, 40, 7006-7016.	3.8	165
3	Discovery of true electrochemical reactions for ultrahigh catalyst mass activity in water splitting. Science Advances, 2016, 2, e1600690.	4.7	161
4	Investigation of thin/well-tunable liquid/gas diffusion layers exhibiting superior multifunctional performance in low-temperature electrolytic water splitting. Energy and Environmental Science, 2017, 10, 166-175.	15.6	154
5	Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells. Nano Energy, 2018, 47, 434-441.	8.2	118
6	Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting. Applied Energy, 2016, 177, 817-822.	5.1	101
7	Performance of a metallic gas diffusion layer for PEM fuel cells. Journal of Power Sources, 2008, 176, 293-298.	4.0	88
8	In situ investigation on ultrafast oxygen evolution reactions of water splitting in proton exchange membrane electrolyzer cells. Journal of Materials Chemistry A, 2017, 5, 18469-18475.	5.2	87
9	Effects of membrane electrode assembly properties on two-phase transport and performance in proton exchange membrane electrolyzer cells. Electrochimica Acta, 2016, 188, 317-326.	2.6	85
10	Modeling of two-phase transport in proton exchange membrane electrolyzer cells for hydrogen energy. International Journal of Hydrogen Energy, 2017, 42, 4478-4489.	3.8	81
11	Quantitative characterization of catalyst layer degradation in PEM fuel cells by X-ray photoelectron spectroscopy. Electrochimica Acta, 2009, 54, 4025-4030.	2.6	79
12	Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production. International Journal of Hydrogen Energy, 2016, 41, 3128-3135.	3.8	79
13	Bipolar plate development with additive manufacturing and protective coating for durable and high-efficiency hydrogen production. Journal of Power Sources, 2018, 396, 590-598.	4.0	74
14	Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting. Applied Energy, 2018, 215, 202-210.	5.1	69
15	Additive manufactured bipolar plate for high-efficiency hydrogen production in proton exchange membrane electrolyzer cells. International Journal of Hydrogen Energy, 2017, 42, 14734-14740.	3.8	67
16	A novel PEMEC with 3D printed non-conductive bipolar plate for low-cost hydrogen production from water electrolysis. Energy Conversion and Management, 2019, 182, 108-116.	4.4	65
17	In-situ investigation of bubble dynamics and two-phase flow in proton exchange membrane electrolyzer cells. International Journal of Hydrogen Energy, 2018, 43, 11223-11233.	3.8	62
18	In-situ investigation and modeling of electrochemical reactions with simultaneous oxygen and hydrogen microbubble evolutions in water electrolysis. International Journal of Hydrogen Energy, 2019, 44, 28283-28293.	3.8	59

#	Article	IF	Citations
19	Thin film surface modifications of thin/tunable liquid/gas diffusion layers for high-efficiency proton exchange membrane electrolyzer cells. Applied Energy, 2017, 206, 983-990.	5.1	58
20	Performance Modeling and Current Mapping of Proton Exchange Membrane Electrolyzer Cells with Novel Thin/Tunable Liquid/Gas Diffusion Layers. Electrochimica Acta, 2017, 255, 405-416.	2.6	56
21	Performance improvement of proton exchange membrane electrolyzer cells by introducing in-plane transport enhancement layers. Electrochimica Acta, 2019, 316, 43-51.	2.6	56
22	Electrochemical investigation of stainless steel corrosion in a proton exchange membrane electrolyzer cell. International Journal of Hydrogen Energy, 2015, 40, 12506-12511.	3.8	54
23	Constructing Ultrathin W-Doped NiFe Nanosheets via Facile Electrosynthesis as Bifunctional Electrocatalysts for Efficient Water Splitting. ACS Applied Materials & Samp; Interfaces, 2021, 13, 20070-20080.	4.0	54
24	Developing titanium micro/nano porous layers on planar thin/tunable LGDLs for high-efficiency hydrogen production. International Journal of Hydrogen Energy, 2018, 43, 14618-14628.	3.8	52
25	Evaluation of nitrided titanium separator plates for proton exchange membrane electrolyzer cells. Journal of Power Sources, 2014, 272, 954-960.	4.0	51
26	In Situ Characterization of the Catalyst Layer in a Polymer Electrolyte Membrane Fuel Cell. Journal of the Electrochemical Society, 2007, 154, B1152.	1.3	45
27	Investigation of titanium liquid/gas diffusion layers in proton exchange membrane electrolyzer cells. International Journal of Green Energy, 2017, 14, 162-170.	2.1	45
28	Ultrathin platinum nanowire based electrodes for high-efficiency hydrogen generation in practical electrolyzer cells. Chemical Engineering Journal, 2021, 410, 128333.	6.6	40
29	Insights into the rapid two-phase transport dynamics in different structured porous transport layers of water electrolyzers through high-speed visualization. Journal of Power Sources, 2021, 516, 230641.	4.0	39
30	Building Electron/Proton Nanohighways for Full Utilization of Water Splitting Catalysts. Advanced Energy Materials, 2020, 10, 1903871.	10.2	38
31	In-situ visualization of corrosion behavior of Al CoCrFeNi high-entropy alloys during electrochemical polarization. Journal of Alloys and Compounds, 2020, 844, 156014.	2.8	37
32	Wettability effects of thin titanium liquid/gas diffusion layers in proton exchange membrane electrolyzer cells. Electrochimica Acta, 2019, 298, 704-708.	2.6	34
33	Investigation of a copper etching technique to fabricate metallic gas diffusion media. Journal of Micromechanics and Microengineering, 2006, 16, N23-N27.	1.5	32
34	W-induced morphological modification of NiFe layered double hydroxides as efficient electrocatalysts for overall water splitting. Electrochimica Acta, 2021, 395, 139199.	2.6	32
35	Diode-laser tomography for arcjet plume reconstruction. Applied Optics, 2001, 40, 957.	2.1	31
36	Carbon-Supported Nickel Nanoparticles on SiO ₂ Cores for Protein Adsorption and Nitroaromatics Reduction. ACS Applied Nano Materials, 2020, 3, 4623-4634.	2.4	31

3

#	Article	IF	CITATIONS
37	High-speed characterization of two-phase flow and bubble dynamics in titanium felt porous media for hydrogen production. Electrochimica Acta, 2021, 370, 137751.	2.6	31
38	Tuning Catalyst Activation and Utilization Via Controlled Electrode Patterning for Low‣oading and Highâ€Efficiency Water Electrolyzers. Small, 2022, 18, e2107745.	5.2	30
39	Diagnostics of an argon arcjet plume with a diode laser. Applied Optics, 1999, 38, 1814.	2.1	25
40	Study on corrosion migrations within catalyst-coated membranes of proton exchangeÂmembrane electrolyzer cells. International Journal of Hydrogen Energy, 2017, 42, 27343-27349.	3.8	24
41	An inkjet-printed capacitive sensor for water level or quality monitoring: investigated theoretically and experimentally. Journal of Materials Chemistry A, 2017, 5, 17841-17847.	5. 2	24
42	Optimization of catalyst-coated membranes for enhancing performance in proton exchange membrane electrolyzer cells. International Journal of Hydrogen Energy, 2021, 46, 1155-1162.	3.8	22
43	Mathematical modeling of novel porous transport layer architectures for proton exchange membrane electrolysis cells. International Journal of Hydrogen Energy, 2021, 46, 25341-25354.	3.8	21
44	Exploring the Impacts of Conditioning on Proton Exchange Membrane Electrolyzers by <i>In Situ</i> Visualization and Electrochemistry Characterization. ACS Applied Materials & Interfaces, 2022, 14, 9002-9012.	4.0	20
45	Flow dynamics in transient heat transfer of n-decane at supercritical pressure. International Journal of Heat and Mass Transfer, 2017, 115, 206-215.	2.5	19
46	Engineered Thin Diffusion Layers for Anion-Exchange Membrane Electrolyzer Cells with Outstanding Performance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 50957-50964.	4.0	19
47	All-in-one bipolar electrode: A new concept for compact and efficient water electrolyzers. Nano Energy, 2021, 90, 106551.	8.2	17
48	Direct thermal visualization of micro-scale hydrogen evolution reactions in proton exchange membrane electrolyzer cells. Energy Conversion and Management, 2019, 199, 111935.	4.4	15
49	A simple convertible electrolyzer in membraneless and membrane-based modes for understanding water splitting mechanism. Journal of Power Sources, 2021, 487, 229353.	4.0	15
50	Visualizing highly selective electrochemical CO2 reduction on a molecularly dispersed catalyst. Materials Today Physics, 2021, 19, 100427.	2.9	15
51	Experimental studies on the effects of sheet resistance and wettability of catalyst layer on electro-catalytic activities for oxygen evolution reaction in proton exchange membrane electrolysis cells. International Journal of Hydrogen Energy, 2020, 45, 26595-26603.	3.8	14
52	Role of electron pathway in dimensionally increasing water splitting reaction sites in liquid electrolytes. Electrochimica Acta, 2020, 362, 137113.	2.6	13
53	Direct Synthesis of Conformal Layered Protonated Titanate Nanoarray Coatings on Various Substrate Surfaces Boosted by Low-Temperature Microwave-Assisted Hydrothermal Synthesis. ACS Applied Materials & Diterfaces, 2018, 10, 35164-35174.	4.0	10
54	Morphology engineering of iridium electrodes via modifying titanium substrates with controllable pillar structures for highly efficient oxygen evolution reaction. Electrochimica Acta, 2022, 405, 139797.	2.6	9

#	Article	IF	Citations
55	High-speed and micro-scale measurements of flow and reaction dynamics for sustainable energy storage. , 2015, , .		8
56	Investigation of titanium felt transport parameters for energy storage and hydrogen/oxygen production. , 2015, , .		8
57	Impacts of catalyst nanolayers on water permeation and swelling of polymer electrolyte membranes. Journal of Power Sources, 2020, 448, 227582.	4.0	8
58	Favorable morphology and electronic conductivity of functional sublayers for highly efficient water splitting electrodes. Journal of Energy Storage, 2021, 36, 102342.	3.9	7
59	Recent progress in in-situ visualization of electrochemical reactions in electrochemical energy devices. Current Opinion in Electrochemistry, 2022, 35, 101088.	2.5	7
60	Experimental Study of Key Issues on Pulse Detonation Engine Development. Transactions of the Japan Society for Aeronautical and Space Sciences, 2003, 45, 243-248.	0.4	6
61	Electrocatalysts: Building Electron/Proton Nanohighways for Full Utilization of Water Splitting Catalysts (Adv. Energy Mater. 16/2020). Advanced Energy Materials, 2020, 10, 2070075.	10.2	3
62	An absorption sensor system for arcjet multi-parameter measurements. Measurement Science and Technology, 2000, 11, N95-N99.	1.4	2
63	Visualization on rapid and micro-scale dynamics of oxygen bubble evolution in PEMECs. , 2017, , .		2
64	Micro/nano manufacturing of novel multifunctional layers for hydrogen production from water splitting. , 2017, , .		2
65	Determination of Parameters in Arcjet Plume by Tomographic Reconstruction. Transactions of the Japan Society for Aeronautical and Space Sciences, 2000, 43, 77-87.	0.4	2
66	Unveiling mechanism of surface-guided platinum nanowire growth. Journal of Materials Science, 2022, 57, 12875-12885.	1.7	2
67	Advanced High Resolution Characterization Techniques for Degradation Studies in Fuel Cells. , 2012, , 365-421.		1
68	Additive manufactured micro-sensor from silver nanoparticles for measuring shear stress and pressure. , 2017, , .		1
69	Direct Visualization of Ultra-Fast and Micro-Scale Bubble Evolutions and Electrochemical Reactions in Proton Exchange Membrane Electrolyzer Cells. ECS Meeting Abstracts, 2019, , .	0.0	1
70	Pore Morphology Effects of Liquid/Gas Diffusion Layers in Proton Exchange Membrane Electrolyzer Cells. ECS Meeting Abstracts, 2019, , .	0.0	1
71	(Invited) In-Situ investigation of Triple-Phase Boundary Electrochemical Reactions in PEM Electrolyzer Cells. ECS Meeting Abstracts, 2017, , .	0.0	0
72	Novel Liquid/Gas Diffusion Layers with Micro/Nano Surface Modifications for High-Efficiency Water Electrolysis. ECS Meeting Abstracts, 2017, , .	0.0	0

#	Article	IF	CITATIONS
73	3D Printed Bipolar Plate for Water Electrolysis. ECS Meeting Abstracts, 2017, , .	0.0	0
74	Highly Conductive Catalyst with Advanced Manufacturing for Efficient Oxygen Evolution Reaction. ECS Meeting Abstracts, $2019, , .$	0.0	0
75	(Invited) Developing Thin and Tunable Catalyst –Coated Liquid/Gas Diffusion Layers with Ultralow Catalyst Loadings. ECS Meeting Abstracts, 2019, , .	0.0	0