
David J Henderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8394459/publications.pdf

Version: 2024-02-01

#	Article	lF	CITATIONS
1	Progressive failures of batten to rafter connections under fluctuating wind loads. Engineering Structures, 2020, 215, 110684.	5.3	2
2	Comparison of wind uplift load sharing for Australian truss- and pitch-framed roof structures. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 204, 104246.	3.9	4
3	Modelling vulnerability of Australian housing to severe wind events: past and present. Australian Journal of Structural Engineering, 2020, 21, 175-192.	1.1	2
4	Physically-based landfalling tropical cyclone scenarios in support of risk assessment. Weather and Climate Extremes, 2019, 26, 100229.	4.1	14
5	Internal pressures in a full-scale test enclosure with windward wall openings. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 189, 118-124.	3.9	4
6	Performance Review of Prefabricated Building Systems and Future Research in Australia. Buildings, 2019, 9, 38.	3.1	170
7	Wind load fluctuations on roof batten to rafter/truss connections. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 175, 193-201.	3.9	4
8	Distribution of Wind Loads in Metal-Clad Roofing Structures. Journal of Structural Engineering, 2018, 144, 04018014.	3.4	4
9	Fragility and climate impact assessment of contemporary housing roof sheeting failure due to extreme wind. Engineering Structures, 2018, 171, 464-475.	5.3	28
10	Three-Dimensional Finite-Element Modeling and Validation of a Timber-Framed House to Wind Loading. Journal of Structural Engineering, 2017, 143, .	3.4	18
11	Finite element modelling of the structural response of roof to wall framing connections in timber-framed houses. Engineering Structures, 2017, 134, 25-36.	5.3	20
12	Development of a Full-Scale Structural Testing Program to Evaluate the Resistance of Australian Houses to Wind Loads. Frontiers in Built Environment, 2017, 3, .	2.3	2
13	Wind Uplift Strength Capacity Variation in Roof-to-Wall Connections of Timber-Framed Houses. Journal of Architectural Engineering, 2016, 22, .	1.6	13
14	Wind loads on contemporary Australian housing. Australian Journal of Structural Engineering, 2016, 17, 136-150.	1.1	12
15	Fragility analysis of roof damage to industrial buildings subject to extreme wind loading in non-cyclonic regions. Engineering Structures, 2016, 128, 333-343.	5.3	26
16	Characterising fatigue macrocrack initiation in profiled steel roof cladding. Engineering Structures, 2016, 125, 364-373.	5.3	9
17	Load sharing and structural response of roof–wall system in a timber-framed house. Engineering Structures, 2016, 122, 310-322.	5.3	19
18	Wind loads on the frames of industrial buildings. Australian Journal of Structural Engineering, 2015, 16, .	1.1	0

DAVID J HENDERSON

#	Article	IF	CITATIONS
19	Reliability based vulnerability modelling of metal-clad industrial buildings to extreme wind loading for cyclonic regions. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 147, 176-185.	3.9	21
20	An Inexpensive Method for Measuring Deformation of Corrugated Cladding Using Close Range Photogrammetry. Experimental Mechanics, 2015, 55, 599-609.	2.0	0
21	Response of toe-nailed, roof-to-wall connections to extreme wind loads in a full-scale, timber-framed, hip roof. Engineering Structures, 2013, 56, 1474-1483.	5.3	26
22	Failure mechanisms of roof sheathing under fluctuating wind loads. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 114, 27-37.	3.9	45
23	The Response of the Dines Anemometer to Gusts and Comparisons with Cup Anemometers. Journal of Atmospheric and Oceanic Technology, 2013, 30, 1320-1336.	1.3	20
24	Development and validation of a numerical model for steel roof cladding subject to static uplift loads. Wind and Structures, an International Journal, 2013, 17, 495-513.	0.8	6
25	Distribution of Wind Loads in a House Roof System and Application to Fragility Analysis. , 2013, , .		0
26	Full-scale testing of low-rise, residential buildings with realistic wind loads. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 104-106, 25-39.	3.9	47
27	Analysis of Wood-Framed Roof Failures under Realistic Hurricane Wind Loads. , 2012, , .		0
28	The response of a wood-frame, gable roof to fluctuating wind loads. Engineering Structures, 2012, 41, 498-509.	5.3	41
29	Response of pierced fixed corrugated steel roofing systems subjected to wind loads. Engineering Structures, 2011, 33, 3290-3298.	5.3	38
30	Wind Induced Fatigue of Metal Roof Cladding during Severe Tropical Cyclones. , 2010, , .		0
31	"Three Little Pigs―Project: Hurricane Risk Mitigation by Integrated Wind Tunnel and Full-Scale Laboratory Tests. Natural Hazards Review, 2010, 11, 151-161.	1.5	59
32	Simulated tropical cyclonic winds for low cycle fatigue loading of steel roofing. Wind and Structures, an International Journal, 2009, 12, 383-400.	0.8	19
33	Tropical Cyclone Larry: Estimation of Wind Field and Assessment of Building Damage. Australian Journal of Structural Engineering, 2007, 7, 209-224.	1.1	33
34	Vulnerability model of an Australian high-set house subjected to cyclonic wind loading. Wind and Structures, an International Journal, 2007, 10, 269-285.	0.8	37