Natalia Kolesnichenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8394396/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Manufacturing of lower olefins from natural gas through methanol and its derivatives (review). Petroleum Chemistry, 2008, 48, 325-334.	1.4	39
2	Synthesis of gasoline from syngas via dimethyl ether. Kinetics and Catalysis, 2007, 48, 789-793.	1.0	32
3	Synthesis of lower olefins from dimethyl ether in the presence of zeolite catalysts modified with rhodium compounds. Petroleum Chemistry, 2011, 51, 55-60.	1.4	30
4	Slurry technology in methanol synthesis (Review). Petroleum Chemistry, 2016, 56, 77-95.	1.4	29
5	The Role of Zeolite Catalysis in Modern Petroleum Refining: Contribution from Domestic Technologies. Petroleum Chemistry, 2019, 59, 247-261.	1.4	26
6	Study of magnesium-containing zeolite catalysts for the synthesis of lower olefins from dimethyl ether. Petroleum Chemistry, 2011, 51, 169-173.	1.4	25
7	Conversion of dimethyl ether into C2-C4 olefins on zeolite catalysts. Petroleum Chemistry, 2009, 49, 42-46.	1.4	19
8	Conversion of dimethyl ether into lower olefins on a La-Zr-HZSM-5/Al2O3 zeolite catalyst. Petroleum Chemistry, 2011, 51, 49-54.	1.4	19
9	The effect of steam on the conversion of dimethyl ether to lower olefins and methanol over zeolite catalysts. Petroleum Chemistry, 2013, 53, 383-387.	1.4	17
10	Zeolite catalysts modified with zirconium and sulfur compounds in the conversion of dimethyl ether to lower olefins. Petroleum Chemistry, 2012, 52, 155-160.	1.4	15
11	Conversion of dimethyl ether to hydrocarbons over structurally organized zeolite catalysts modified with titanium and sulfur. Petroleum Chemistry, 2013, 53, 33-38.	1.4	14
12	Stability of La-Zr-HZSM-5/Al2O3 zeolite catalysts in the conversion of dimethyl ether to lower olefins. Petroleum Chemistry, 2013, 53, 225-232.	1.4	14
13	An in situ study of dimethyl ether conversion over HZSM-5/Al2O3 zeolite catalysts by high-temperature diffuse reflectance infrared fourier transform spectroscopy. Petroleum Chemistry, 2013, 53, 316-321.	1.4	14
14	Physicochemical and catalytic characteristics of La-H-ZSM-5 zeolite in converting dimethyl ether to the mixtures of gasoline hydrocarbons: Effect of ion exchange conditions. Russian Journal of Physical Chemistry A, 2014, 88, 381-385.	0.6	13
15	Synthesis of gasoline fractions from CO and H2 through oxygenates. Petroleum Chemistry, 2015, 55, 112-117.	1.4	13
16	Zinc-Modified ZSM-5 Nanozeolites Synthesized by the Seed-Induced Method: Interrelation of Their Textural, Acidic, and Catalytic Properties in DME Conversion to Hydrocarbons. Petroleum Chemistry, 2017, 57, 1036-1042.	1.4	13
17	Nanodispersed Suspensions of Zeolite Catalysts for Converting Dimethyl Ether into Olefins. Russian Journal of Physical Chemistry A, 2018, 92, 118-123.	0.6	13
18	Direct Low-Temperature Oxidative Conversion of Methane to Acetic Acid on Rhodium-Modified Zeolites. Petroleum Chemistry, 2021, 61, 663.	1.4	12

#	Article	IF	CITATIONS
19	Formation of MFI-type zeolite nanoparticles and zeolite-based suspensions. Petroleum Chemistry, 2016, 56, 827-831.	1.4	11
20	Influence of spectral and textural characteristics and acidity of MFI zeolite on activity of catalysts for dimethyl ether conversion to hydrocarbons. Petroleum Chemistry, 2016, 56, 812-818.	1.4	11
21	Polymeric rhodium-containing catalysts in olefin hydroformylation. Russian Chemical Bulletin, 2004, 53, 2449-2454.	1.5	8
22	Ultrasound-Assisted Modification of Zeolite Catalyst for Dimethyl Ether Conversion to Olefins with Magnesium Compounds. Petroleum Chemistry, 2018, 58, 863-868.	1.4	8
23	Zeolite Catalysts for the Synthesis of Lower Olefins from Dimethyl Ether (a Review). Petroleum Chemistry, 2020, 60, 459-470.	1.4	8
24	Dimethyl ether to olefins conversion in a slurry reactor: Effects of the size of particles and the textural and acidic properties of the MFI-type zeolite. Petroleum Chemistry, 2017, 57, 576-583.	1.4	6
25	Dimethyl ether conversion to olefins in a slurry reactor: the effect of MFI zeolite catalyst acidity and selectivity control. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124, 825-838.	1.7	6
26	Rhodium–Chitosan Composites Supported on Magnesium–HZSM-5 in the Conversion of Dimethyl Ether to Lower Olefins. Petroleum Chemistry, 2018, 58, 1013-1018.	1.4	6
27	Catalysts for Dimethyl Ether Conversion to Lower Olefins: Effect of Acidity, Postsynthesis Treatment, and Steam and Methanol Content in Feedstock. Petroleum Chemistry, 2019, 59, 427-437.	1.4	6
28	Effect of Ultrasonic Treatment on the Physicochemical and Catalytic Properties of Rhodium–Chitosan/HTsVM Catalysts in Dimethyl Ether Conversion to Lower Olefins. Petroleum Chemistry, 2019, 59, 1017-1022.	1.4	6
29	Highly Selective MTO Reaction over a Nanosized ZSM-5 Zeolite Modified by Fe via the Low-Temperature Dielectric Barrier Discharge Plasma Method. Russian Journal of Applied Chemistry, 2020, 93, 137-148.	0.5	6
30	Features of the Mechanism of the Dimethyl Ether to Light Olefins Conversion over MgZSM-5/Al2O3: Study by Vibrational Spectroscopy Experimental and Theoretical Methods. Catalysis Letters, 2021, 151, 1309-1319.	2.6	6
31	Catalytic synthesis of propylene carbonate from propylene oxide and carbon dioxide in the presence of rhodium complexes modified with organophosphorus ligands and chitosan. Petroleum Chemistry, 2013, 53, 412-417.	1.4	5
32	Dimethyl Ether Conversion to Gasoline Hydrocarbons over Nanosized Zeolite Catalysts: Effect of Modifier Nature. Petroleum Chemistry, 2019, 59, 1331-1336.	1.4	5
33	Dimethyl Ether Conversion to Light Olefins on Zeolite Catalysts: Effect of MFI-Type Zeolite Nature and SiO2/Al2O3 Molar Ratio on Catalyst Efficiency. Catalysis Letters, 2020, 150, 762-770.	2.6	5
34	Modern Methods for Producing Acetic Acid from Methane: New Trends (A Review). Petroleum Chemistry, 2022, 62, 40-61.	1.4	5
35	Carbon dioxide hydrogenation to formic acid in the presence of rhodium-oligoarylphosphonite catalyst systems. Petroleum Chemistry, 2006, 46, 22-24.	1.4	4
36	Effect of Some Technological Parameters on the Conversion of Dimethyl Ether to Light Olefins in a Slurry Reactor. Russian Journal of Applied Chemistry, 2018, 91, 1773-1778.	0.5	4

Natalia Kolesnichenko

#	Article	IF	CITATIONS
37	Catalysts for Synthesizing Liquid Hydrocarbons from Methanol and Dimethyl Ether: A Review. Catalysis in Industry, 2019, 11, 101-112.	0.7	4
38	Dimethyl Ether Conversion to Liquid Hydrocarbons: Effect of SiO2/Al2O3 Molar Ratio and Zinc Introduction Method on the Properties of a Nanosized Zeolite Catalyst. Petroleum Chemistry, 2019, 59, 535-539.	1.4	4
39	Features of Zinc Modification of a Zeolite Catalyst for Dimethyl Ether Conversion to Synthetic Liquid Hydrocarbons. Petroleum Chemistry, 2019, 59, 745-750.	1.4	3
40	Dimethyl ether conversion to light olefins in slurry and fixedâ€bed reactors: coke nature and location on Mg/ ZSM â€5 catalyst. Journal of Chemical Technology and Biotechnology, 2021, 96, 2696-2703.	3.2	3
41	Hydrogenation of carbon dioxide in the presence of rhodium catalysts. Russian Chemical Bulletin, 2004, 53, 2542-2545.	1.5	2
42	Dimethyl Ether Conversion into Light Olefins in a Slurry Reactor: Entrainment and Decomposition of Dispersion Liquid. Kinetics and Catalysis, 2019, 60, 681-687.	1.0	2
43	Conversion of Dimethyl Ether to a Mixture of Liquid Hydrocarbons with Increased Triptane Content. Russian Journal of Applied Chemistry, 2019, 92, 235-243.	0.5	2
44	Conversion of Dimethyl Ether to a Triptane-Enriched Mixture of Liquid Hydrocarbons: Influence of Modifier and Reaction Conditions. Russian Journal of Applied Chemistry, 2020, 93, 1261-1269.	0.5	2
45	Synthesis of liquid hydrocarbons enriched with triptane via dimethyl ether conversion over combined catalyst. Russian Chemical Bulletin, 2020, 69, 691-696.	1.5	2
46	Conversion of Dimethyl Ether to Light Olefins over Rhodium-Containing Zeolite Catalysts: Properties of Catalysts Depending on the Method of Rhodium Introduction. Petroleum Chemistry, 2022, 62, 425-432.	1.4	2
47	Catalysts for Synthesis of Liquid Hydrocarbons from Methanol and Dimethyl Ether: Review. Kataliz V Promyshlennosti, 2018, 18, 20-32.	0.3	1
48	Polymeric Rhodium-Containing Catalysts in Olefin Hydroformylation. ChemInform, 2005, 36, no.	0.0	0
49	Effect of Radiation-Chemical Activation of the Rhodium*Chitosan Composite on the Zeolite Catalyst Properties in Dimethyl Ether Conversion to Light Olefins. Petroleum Chemistry, 2021, 61, 1251-1259.	1.4	0