
C Neil Hunter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8394246/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Redesigning the photosynthetic light reactions to enhance photosynthesis – the <i>PhotoRedesign</i> consortium. Plant Journal, 2022, 109, 23-34.	5.7	21
2	FRET measurement of cytochrome bc1 and reaction centre complex proximity in live Rhodobacter sphaeroides cells. Biochimica Et Biophysica Acta - Bioenergetics, 2022, 1863, 148508.	1.0	5
3	2.4-Ã structure of the double-ring <i>Gemmatimonas phototrophica</i> photosystem. Science Advances, 2022, 8, eabk3139.	10.3	16
4	Changes in supramolecular organization of cyanobacterial thylakoid membrane complexes in response to far-red light photoacclimation. Science Advances, 2022, 8, eabj4437.	10.3	9
5	Engineering purple bacterial carotenoid biosynthesis to study the roles of carotenoids in light-harvesting complexes. Methods in Enzymology, 2022, , .	1.0	1
6	Cryo-EM structures of the <i>Synechocystis</i> sp. PCC 6803 cytochrome <i>b</i> 6 <i>f</i> complex with and without the regulatory PetP subunit. Biochemical Journal, 2022, 479, 1487-1503.	3.7	7
7	Multiscale modeling and cinematic visualization of photosynthetic energy conversion processes from electronic to cell scales. Parallel Computing, 2021, 102, 102698.	2.1	10
8	Developmental acclimation of the thylakoid proteome to light intensity in <i>Arabidopsis</i> . Plant Journal, 2021, 105, 223-244.	5.7	43
9	Structures of <i>Rhodopseudomonas palustris</i> RC-LH1 complexes with open or closed quinone channels. Science Advances, 2021, 7, .	10.3	38
10	The 2.4 Ã cryo-EM structure of a heptameric light-harvesting 2 complex reveals two carotenoid energy transfer pathways. Science Advances, 2021, 7, .	10.3	26
11	How the O2-dependent Mg-protoporphyrin monomethyl ester cyclase forms the fifth ring of chlorophylls. Nature Plants, 2021, 7, 365-375.	9.3	6
12	Evolution of Ycf54-independent chlorophyll biosynthesis in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
13	Cytochrome b6f – Orchestrator of photosynthetic electron transfer. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148380.	1.0	75
14	Cryo-EM structure of the monomeric <i>Rhodobacter sphaeroides</i> RC–LH1 core complex at 2.5â€Ã Biochemical Journal, 2021, 478, 3775-3790.	3.7	33
15	Cryo-EM structure of the <i>Rhodospirillum rubrum</i> RC–LH1 complex at 2.5â€Ã Biochemical Journal, 2021, 478, 3253-3263.	3.7	23
16	Comparative proteomics of thylakoids from <i>Arabidopsis</i> grown in laboratory and field conditions. Plant Direct, 2021, 5, e355.	1.9	4
17	Cryo-EM Structure of the <i>Rhodobacter sphaeroides</i> Light-HarvestingÂ2 Complex at 2.1 Ã Biochemistry, 2021, 60, 3302-3314.	2.5	38
18	Cryo-EM structure of the dimeric <i>Rhodobacter sphaeroides</i> RC-LH1 core complex at 2.9â€Ã: the structural basis for dimerisation. Biochemical Journal, 2021, 478, 3923-3937.	3.7	26

#	Article	IF	CITATIONS
19	Multicomponent Nanoscale Patterning of Functional Lightâ€Harvesting Protein Complexes by Local Oxidation Lithography. Advanced Materials Interfaces, 2021, 8, 2001670.	3.7	0
20	Carotenoid-to-(bacterio)chlorophyll energy transfer in LH2 antenna complexes from Rba. sphaeroides reconstituted with non-native (bacterio)chlorophylls. Photosynthesis Research, 2020, 144, 155-169.	2.9	6
21	Extensive remodeling of the photosynthetic apparatus alters energy transfer among photosynthetic complexes when cyanobacteria acclimate to far-red light. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148064.	1.0	46
22	Progress and challenges in engineering cyanobacteria as chassis for lightâ€driven biotechnology. Microbial Biotechnology, 2020, 13, 363-367.	4.2	41
23	A Thermostable Protein Matrix for Spectroscopic Analysis of Organic Semiconductors. Journal of the American Chemical Society, 2020, 142, 13898-13907.	13.7	3
24	The active site of magnesium chelatase. Nature Plants, 2020, 6, 1491-1502.	9.3	27
25	Excitation energy transfer between monomolecular layers of light harvesting LH2 and LH1-reaction centre complexes printed on a glass substrate. Lab on A Chip, 2020, 20, 2529-2538.	6.0	7
26	Chromosome-free bacterial cells are safe and programmable platforms for synthetic biology. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6752-6761.	7.1	32
27	A photosynthetic antenna complex foregoes unity carotenoid-to-bacteriochlorophyll energy transfer efficiency to ensure photoprotection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6502-6508.	7.1	25
28	Biosynthesis of the modified tetrapyrroles—the pigments of life. Journal of Biological Chemistry, 2020, 295, 6888-6925.	3.4	170
29	Protochlorophyllide synthesis by recombinant cyclases from eukaryotic oxygenic phototrophs and the dependence on Ycf54. Biochemical Journal, 2020, 477, 2313-2325.	3.7	8
30	Xanthophyll carotenoids stabilise the association of cyanobacterial chlorophyll synthase with the LHC-like protein HliD. Biochemical Journal, 2020, 477, 4021-4036.	3.7	15
31	Membrane organization of photosystem I complexes in the most abundant phototroph on Earth. Nature Plants, 2019, 5, 879-889.	9.3	22
32	Phosphite binding by the HtxB periplasmic binding protein depends on the protonation state of the ligand. Scientific Reports, 2019, 9, 10231.	3.3	6
33	Single-molecule study of redox control involved in establishing the spinach plastocyanin-cytochrome bf electron transfer complex. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 591-599.	1.0	4
34	Atoms to Phenotypes: Molecular Design Principles of Cellular Energy Metabolism. Cell, 2019, 179, 1098-1111.e23.	28.9	122
35	Cryo-EM structure of the spinach cytochrome b6 f complex at 3.6ÂÃ… resolution. Nature, 2019, 575, 53	5- 5 3.8.	83
36	Proteorhodopsin Overproduction Enhances the Long-Term Viability of Escherichia coli. Applied and Environmental Microbiology, 2019, 86, .	3.1	12

#	Article	IF	CITATIONS
37	Depletion of the FtsH1/3 Proteolytic Complex Suppresses the Nutrient Stress Response in the Cyanobacterium <i>Synechocystis</i> sp strain PCC 6803. Plant Cell, 2019, 31, 2912-2928.	6.6	12
38	Engineering of B800 bacteriochlorophyll binding site specificity in the Rhodobacter sphaeroides LH2 antenna. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 209-223.	1.0	36
39	Dynamic Thylakoid Stacking Is Regulated by LHCII Phosphorylation but Not Its interaction with PSI. Plant Physiology, 2019, 180, 2152-2166.	4.8	54
40	Turning the challenge of quantum biology on its head: biological control of quantum optical systems. Faraday Discussions, 2019, 216, 57-71.	3.2	7
41	Picosecond Dynamical Response to a Pressure-Induced Break of the Tertiary Structure Hydrogen Bonds in a Membrane Chromoprotein. Journal of Physical Chemistry B, 2019, 123, 2087-2093.	2.6	4
42	Orientational Dynamics of Transition Dipoles and Exciton Relaxation in LH2 from Ultrafast Two-Dimensional Anisotropy. Journal of Physical Chemistry Letters, 2019, 10, 270-277.	4.6	11
43	The ChID subunit links the motor and porphyrin binding subunits of magnesium chelatase. Biochemical Journal, 2019, 476, 1875-1887.	3.7	23
44	Dissecting the cytochrome <i>c</i> 2–reaction centre interaction in bacterial photosynthesis using single molecule force spectroscopy. Biochemical Journal, 2019, 476, 2173-2190.	3.7	10
45	Engineered biosynthesis of bacteriochlorophyll gF in Rhodobacter sphaeroides. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 501-509.	1.0	15
46	Cryo-EM structure of the Blastochloris viridis LH1–RC complex at 2.9 à Nature, 2018, 556, 203-208.	27.8	88
47	Complete enzyme set for chlorophyll biosynthesis in <i>Escherichia coli</i> . Science Advances, 2018, 4, eaaq1407.	10.3	40
48	Dynamic thylakoid stacking regulates the balance between linear and cyclic photosynthetic electron transfer. Nature Plants, 2018, 4, 116-127.	9.3	98
49	Probing the local lipid environment of the cytochrome bc1 and Synechocystis sp. PCC 6803 cytochrome b6f complexes with styrene maleic acid. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 215-225.	1.0	29
50	Fabrication of microstructured binary polymer brush "corrals―with integral pH sensing for studies of proton transport in model membrane systems. Chemical Science, 2018, 9, 2238-2251.	7.4	26
51	Probing the quality control mechanism of the Escherichia coli twin-arginine translocase with folding variants of a de novo–designed heme protein. Journal of Biological Chemistry, 2018, 293, 6672-6681.	3.4	17
52	Carotenoid to bacteriochlorophyll energy transfer in the RC–LH1–PufX complex from Rhodobacter sphaeroides containing the extended conjugation keto-carotenoid diketospirilloxanthin. Photosynthesis Research, 2018, 135, 33-43.	2.9	2
53	Identification of protein W, the elusive sixth subunit of the Rhodopseudomonas palustris reaction center-light harvesting 1 core complex. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 119-128.	1.0	19
54	Correlated fluorescence quenching and topographic mapping of Light-Harvesting Complex II within surface-assembled aggregates and lipid bilayers. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 1075-1085.	1.0	24

#	Article	IF	CITATIONS
55	A synthetic biological quantum optical system. Nanoscale, 2018, 10, 13064-13073.	5.6	10
56	A paralog of a bacteriochlorophyll biosynthesis enzyme catalyzes the formation of 1,2-dihydrocarotenoids in green sulfur bacteria. Journal of Biological Chemistry, 2018, 293, 15233-15242.	3.4	9
57	Plant and algal chlorophyll synthases function in <i>Synechocystis</i> and interact with the YidC/Alb3 membrane insertase. FEBS Letters, 2018, 592, 3062-3073.	2.8	17
58	Augmenting light coverage for photosynthesis through YFP-enhanced charge separation at the Rhodobacter sphaeroides reaction centre. Nature Communications, 2017, 8, 13972.	12.8	40
59	Singleâ€cell genomics based on Raman sorting reveals novel carotenoidâ€containing bacteria in the Red Sea. Microbial Biotechnology, 2017, 10, 125-137.	4.2	72
60	The PufX quinone channel enables the lightâ€harvesting 1 antenna to bind more carotenoids for light collection and photoprotection. FEBS Letters, 2017, 591, 573-580.	2.8	21
61	A Novel Application of Non-Destructive Readout Technology to Localisation Microscopy. Scientific Reports, 2017, 7, 42313.	3.3	1
62	Micrometre and nanometre scale patterning of binary polymer brushes, supported lipid bilayers and proteins. Chemical Science, 2017, 8, 4517-4526.	7.4	20
63	The C-terminus of PufX plays a key role in dimerisation and assembly of the reaction center light-harvesting 1 complex from Rhodobacter sphaeroides. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 795-803.	1.0	22
64	Three classes of oxygen-dependent cyclase involved in chlorophyll and bacteriochlorophyll biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6280-6285.	7.1	38
65	Lateral Segregation of Photosystem I in Cyanobacterial Thylakoids. Plant Cell, 2017, 29, 1119-1136.	6.6	54
66	Simple, Direct Routes to Polymer Brush Traps and Nanostructures for Studies of Diffusional Transport in Supported Lipid Bilayers. Langmuir, 2017, 33, 3672-3679.	3.5	4
67	Controlling transmembrane protein concentration and orientation in supported lipid bilayers. Chemical Communications, 2017, 53, 4250-4253.	4.1	13
68	Determination of Cell Doubling Times from the Return-on-Investment Time of Photosynthetic Vesicles Based on Atomic Detail Structural Models. Journal of Physical Chemistry B, 2017, 121, 3787-3797.	2.6	12
69	Communication: Broad manifold of excitonic states in light-harvesting complex 1 promotes efficient unidirectional energy transfer <i>in vivo</i> . Journal of Chemical Physics, 2017, 147, 131101.	3.0	13
70	PufQ regulates porphyrin flux at the haem/bacteriochlorophyll branchpoint of tetrapyrrole biosynthesis via interactions with ferrochelatase. Molecular Microbiology, 2017, 106, 961-975.	2.5	9
71	Engineering of a calcium-ion binding site into the RC-LH1-PufX complex of Rhodobacter sphaeroides to enable ion-dependent spectral red-shifting. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 927-938.	1.0	13
72	Mapping the ultrafast flow of harvested solar energy in living photosynthetic cells. Nature Communications, 2017, 8, 988.	12.8	44

#	Article	IF	CITATIONS
73	Origin of the S* Excited State Feature of Carotenoids in Light-Harvesting Complex 1 from Purple Photosynthetic Bacteria. Journal of Physical Chemistry B, 2017, 121, 7571-7585.	2.6	13
74	Development of SimCells as a novel chassis for functional biosensors. Scientific Reports, 2017, 7, 7261.	3.3	24
75	Conserved residues in Ycf54 are required for protochlorophyllide formation in Synechocystis sp. PCC 6803. Biochemical Journal, 2017, 474, 667-681.	3.7	12
76	Repurposing a photosynthetic antenna protein as a super-resolution microscopy label. Scientific Reports, 2017, 7, 16807.	3.3	1
77	From Monochrome to Technicolor: Simple Generic Approaches to Multicomponent Protein Nanopatterning Using Siloxanes with Photoremovable Protein-Resistant Protecting Groups. Langmuir, 2017, 33, 8829-8837.	3.5	10
78	Direct Imaging of Protein Organization in an Intact Bacterial Organelle Using High-Resolution Atomic Force Microscopy. ACS Nano, 2017, 11, 126-133.	14.6	45
79	New insights into the photochemistry of carotenoid spheroidenone in light-harvesting complex 2 from the purple bacterium Rhodobacter sphaeroides. Photosynthesis Research, 2017, 131, 291-304.	2.9	21
80	The molecular basis of phosphite and hypophosphite recognition by ABC-transporters. Nature Communications, 2017, 8, 1746.	12.8	50
81	Overall energy conversion efficiency of a photosynthetic vesicle. ELife, 2016, 5, .	6.0	63
82	Synthesis of Chlorophyll-Binding Proteins in a Fully Segregated Δycf54 Strain of the Cyanobacterium Synechocystis PCC 6803. Frontiers in Plant Science, 2016, 7, 292.	3.6	25
83	Absence of the <i>cbb</i> ₃ Terminal Oxidase Reveals an Active Oxygen-Dependent Cyclase Involved in Bacteriochlorophyll Biosynthesis in Rhodobacter sphaeroides. Journal of Bacteriology, 2016, 198, 2056-2063.	2.2	12
84	Two Unrelated 8-Vinyl Reductases Ensure Production of Mature Chlorophylls in Acaryochloris marina. Journal of Bacteriology, 2016, 198, 1393-1400.	2.2	11
85	The catalytic power of magnesium chelatase: a benchmark for the <scp>AAA</scp> ⁺ <scp>ATP</scp> ases. FEBS Letters, 2016, 590, 1687-1693.	2.8	12
86	PucC and LhaA direct efficient assembly of the lightâ€harvesting complexes in <i>Rhodobacter sphaeroides</i> . Molecular Microbiology, 2016, 99, 307-327.	2.5	29
87	Nanomechanical and Thermophoretic Analyses of the Nucleotide-Dependent Interactions between the AAA+ Subunits of Magnesium Chelatase. Journal of the American Chemical Society, 2016, 138, 6591-6597.	13.7	16
88	Biosynthesis of Chlorophyll <i>a</i> in a Purple Bacterial Phototroph and Assembly into a Plant Chlorophyll–Protein Complex. ACS Synthetic Biology, 2016, 5, 948-954.	3.8	33
89	Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes. Nano Letters, 2016, 16, 6850-6856.	9.1	60
90	Evaluating the Nature of So-Called S*-State Feature in Transient Absorption of Carotenoids in Light-Harvesting Complex 2 (LH2) from Purple Photosynthetic Bacteria. Journal of Physical Chemistry B, 2016, 120, 11123-11131.	2.6	15

#	Article	IF	CITATIONS
91	Electronic Structure and Dynamics of Higher-Lying Excited States in Light Harvesting Complex 1 from <i>Rhodobacter sphaeroides</i> . Journal of Physical Chemistry A, 2016, 120, 4124-4130.	2.5	15
92	Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from <i>Rhodobacter sphaeroides</i> with an Engineered Carotenoid Synthesis Pathway. Journal of Physical Chemistry B, 2016, 120, 5429-5443.	2.6	22
93	Dimerization of core complexes as an efficient strategy for energy trapping in Rhodobacter sphaeroides. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 634-642.	1.0	14
94	Fabrication of Nanometer- and Micrometer-Scale Protein Structures by Site-Specific Immobilization of Histidine-Tagged Proteins to Aminosiloxane Films with Photoremovable Protein-Resistant Protecting Groups. Langmuir, 2016, 32, 1818-1827.	3.5	22
95	Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing. Parallel Computing, 2016, 55, 17-27.	2.1	37
96	Supramolecular organization of photosynthetic complexes in membranes of Roseiflexus castenholzii. Photosynthesis Research, 2016, 127, 117-130.	2.9	13
97	An intact light harvesting complex I antenna system is required for complete state transitions in Arabidopsis. Nature Plants, 2015, 1, 15176.	9.3	74
98	Interference lithographic nanopatterning of plant and bacterial light-harvesting complexes on gold substrates. Interface Focus, 2015, 5, 20150005.	3.0	10
99	Five Glutamic Acid Residues in the C-Terminal Domain of the ChlD Subunit Play a Major Role in Conferring Mg2+Cooperativity upon Magnesium Chelatase. Biochemistry, 2015, 54, 6659-6662.	2.5	6
100	Porphyrin Binding to Gun4 Protein, Facilitated by a Flexible Loop, Controls Metabolite Flow through the Chlorophyll Biosynthetic Pathway. Journal of Biological Chemistry, 2015, 290, 28477-28488.	3.4	28
101	Functional characteristics of spirilloxanthin and keto-bearing Analogues in light-harvesting LH2 complexes from Rhodobacter sphaeroides with a genetically modified carotenoid synthesis pathway. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 640-655.	1.0	20
102	Fabrication of Self-Cleaning, Reusable Titania Templates for Nanometer and Micrometer Scale Protein Patterning. ACS Nano, 2015, 9, 6262-6270.	14.6	19
103	Stark absorption spectroscopy on the carotenoids bound to B800–820 and B800–850 type LH2 complexes from a purple photosynthetic bacterium, Phaeospirillum molischianum strain DSM120. Archives of Biochemistry and Biophysics, 2015, 572, 158-166.	3.0	2
104	Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 189-201.	1.0	84
105	Structural and functional consequences of removing the N-terminal domain from the magnesium chelatase ChlH subunit of <i>Thermosynechococcus elongatus</i> . Biochemical Journal, 2014, 464, 315-322.	3.7	13
106	Elucidation of the preferred routes of C8-vinyl reduction in chlorophyll and bacteriochlorophyll biosynthesis. Biochemical Journal, 2014, 462, 433-440.	3.7	21
107	A Cyanobacterial Chlorophyll Synthase-HliD Complex Associates with the Ycf39 Protein and the YidC/Alb3 Insertase Â. Plant Cell, 2014, 26, 1267-1279.	6.6	125
108	Nanodomains of Cytochrome <i>b</i> Â6 Â <i>f</i> and Photosystem II Complexes in Spinach Grana Thylakoid Membranes Â. Plant Cell, 2014, 26, 3051-3061.	6.6	74

#	Article	IF	CITATIONS
109	Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobacter sphaeroides. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1769-1780.	1.0	99
110	Nano-mechanical mapping of the interactions between surface-bound RC-LH1-PufX core complexes and cytochrome c 2 attached to an AFM probe. Photosynthesis Research, 2014, 120, 169-180.	2.9	16
111	Aberrant Assembly Complexes of the Reaction Center Light-harvesting 1 PufX (RC-LH1-PufX) Core Complex of Rhodobacter sphaeroides Imaged by Atomic Force Microscopy. Journal of Biological Chemistry, 2014, 289, 29927-29936.	3.4	21
112	Reversible Switching between Nonquenched and Quenched States in Nanoscale Linear Arrays of Plant Light-Harvesting Antenna Complexes. Langmuir, 2014, 30, 8481-8490.	3.5	18
113	Fast, Simple, Combinatorial Routes to the Fabrication of Reusable, Plasmonically Active Gold Nanostructures by Interferometric Lithography of Self-Assembled Monolayers. ACS Nano, 2014, 8, 7858-7869.	14.6	16
114	Engineered biosynthesis of bacteriochlorophyll b in Rhodobacter sphaeroides. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1611-1616.	1.0	35
115	Zwitterionic Poly(amino acid methacrylate) Brushes. Journal of the American Chemical Society, 2014, 136, 9404-9413.	13.7	162
116	Characterization of the magnesium chelatase from Thermosynechococcus elongatus. Biochemical Journal, 2014, 457, 163-170.	3.7	13
117	Efficiency of light harvesting in a photosynthetic bacterium adapted to different levels of light. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1835-1846.	1.0	21
118	A mutation leading to super-assembly of twin-arginine translocase (Tat) protein complexes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1978-1986.	4.1	11
119	Photocatalytic Nanolithography of Self-Assembled Monolayers and Proteins. ACS Nano, 2013, 7, 7610-7618.	14.6	25
120	Integration of multiple chromophores with native photosynthetic antennas to enhance solar energy capture and delivery. Chemical Science, 2013, 4, 3924.	7.4	37
121	Identification of an 8-vinyl reductase involved in bacteriochlorophyll biosynthesis in <i>Rhodobacter sphaeroides</i> and evidence for the existence of a third distinct class of the enzyme. Biochemical Journal, 2013, 450, 397-405.	3.7	30
122	Three-Dimensional Structure of the <i>Rhodobacter sphaeroides</i> RC-LH1-PufX Complex: Dimerization and Quinone Channels Promoted by PufX. Biochemistry, 2013, 52, 7575-7585.	2.5	122
123	Structure of the Cyanobacterial Magnesium Chelatase H Subunit Determined by Single Particle Reconstruction and Small-angle X-ray Scattering. Journal of Biological Chemistry, 2012, 287, 4946-4956.	3.4	19
124	Conserved Chloroplast Open-reading Frame ycf54 Is Required for Activity of the Magnesium Protoporphyrin Monomethylester Oxidative Cyclase in Synechocystis PCC 6803. Journal of Biological Chemistry, 2012, 287, 27823-27833.	3.4	83
125	Micrometer and Nanometer Scale Photopatterning of Proteins on Glass Surfaces by Photo-degradation of Films Formed from Oligo(Ethylene Glycol) Terminated Silanes. Biointerphases, 2012, 7, 54.	1.6	12
126	Structural Implications of Hydrogen-Bond Energetics in Membrane Proteins Revealed by High-Pressure Spectroscopy. Biophysical Journal, 2012, 103, 2352-2360.	0.5	15

#	Article	IF	CITATIONS
127	Adaptation of intracytoplasmic membranes to altered light intensity in Rhodobacter sphaeroides. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1616-1627.	1.0	69
128	Photoprotection in a purple phototrophic bacterium mediated by oxygen-dependent alteration of carotenoid excited-state properties. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8570-8575.	7.1	59
129	Quantitative proteomic analysis of intracytoplasmic membrane development in <i>Rhodobacter sphaeroides</i> . Molecular Microbiology, 2012, 84, 1062-1078.	2.5	21
130	Experimental evidence that the membrane-spanning helix of PufX adopts a bent conformation that facilitates dimerisation of the Rhodobacter sphaeroides RC–LH1 complex through N-terminal interactions. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 95-107.	1.0	33
131	Monomeric RC–LH1 core complexes retard LH2 assembly and intracytoplasmic membrane formation in PufX-minus mutants of Rhodobacter sphaeroides. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1044-1055.	1.0	27
132	Carotenoids are essential for normal levels of dimerisation of the RC–LH1–PufX core complex of Rhodobacter sphaeroides: Characterisation of R-26 as a crtB (phytoene synthase) mutant. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1056-1063.	1.0	28
133	Förster Energy Transfer Theory as Reflected in the Structures of Photosynthetic Lightâ€Harvesting Systems. ChemPhysChem, 2011, 12, 518-531.	2.1	142
134	Functional Assignments for the Carboxyl-Terminal Domains of the Ferrochelatase from <i>Synechocystis</i> PCC 6803: The CAB Domain Plays a Regulatory Role, and Region II Is Essential for Catalysis Â. Plant Physiology, 2011, 155, 1735-1747.	4.8	41
135	Membrane invagination in <i>Rhodobacter sphaeroides</i> is initiated at curved regions of the cytoplasmic membrane, then forms both budded and fully detached spherical vesicles. Molecular Microbiology, 2010, 76, 833-847.	2.5	110
136	Photosynthetic Vesicle Architecture and Constraints on Efficient EnergyÂHarvesting. Biophysical Journal, 2010, 99, 67-75.	0.5	60
137	Long-Range Energy Propagation in Nanometer Arrays of Light Harvesting Antenna Complexes. Nano Letters, 2010, 10, 1450-1457.	9.1	68
138	Structural model and excitonic properties of the dimeric RC–LH1–PufX complex from Rhodobacter sphaeroides. Chemical Physics, 2009, 357, 188-197.	1.9	48
139	Site-Specific Immobilization and Micrometer and Nanometer Scale Photopatterning of Yellow Fluorescent Protein on Glass Surfaces. Journal of the American Chemical Society, 2009, 131, 896-897.	13.7	53
140	Protein-Induced Membrane Curvature Investigated through Molecular Dynamics Flexible Fitting. Biophysical Journal, 2009, 97, 321-329.	0.5	68
141	"Torsional tapping―atomic force microscopy using T-shaped cantilevers. Applied Physics Letters, 2009, 94, .	3.3	18
142	Atomic Force Microscopy Studies of Native Photosynthetic Membranes. Biochemistry, 2009, 48, 3679-3698.	2.5	88
143	Reaction Center-Light-Harvesting Core Complexes of Purple Bacteria. Advances in Photosynthesis and Respiration, 2009, , 155-179.	1.0	19
144	Protein Shape and Crowding Drive Domain Formation and Curvature in Biological Membranes. Biophysical Journal, 2008, 94, 640-647.	0.5	74

#	Article	IF	CITATIONS
145	Conformational changes in an ultrafast light-driven enzyme determine catalytic activity. Nature, 2008, 456, 1001-1004.	27.8	133
146	The Organization of LH2 Complexes in Membranes from Rhodobacter sphaeroides. Journal of Biological Chemistry, 2008, 283, 30772-30779.	3.4	59
147	Directed assembly of functional light harvesting antenna complexes onto chemically patterned surfaces. Nanotechnology, 2008, 19, 025101.	2.6	27
148	Nanometer Arrays of Functional Light Harvesting Antenna Complexes by Nanoimprint Lithography and Hostâ^'Guest Interactions. Journal of the American Chemical Society, 2008, 130, 8892-8893.	13.7	68
149	The C-Terminal Extension of Ferrochelatase Is Critical for Enzyme Activity and for Functioning of the Tetrapyrrole Pathway in <i>Synechocystis</i> Strain PCC 6803. Journal of Bacteriology, 2008, 190, 2086-2095.	2.2	39
150	Three-dimensional Reconstruction of a Membrane-bending Complex. Journal of Biological Chemistry, 2008, 283, 14002-14011.	3.4	92
151	Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15723-15728.	7.1	166
152	Directed Formation of Micro- and Nanoscale Patterns of Functional Light-Harvesting LH2 Complexes. Journal of the American Chemical Society, 2007, 129, 14625-14631.	13.7	54
153	Direct Measurement of Metal Ion Chelation in the Active Site of Human Ferrochelatase. Biochemistry, 2007, 46, 8121-8127.	2.5	44
154	Direct Measurement of Metal-Ion Chelation in the Active Site of the AAA+ ATPase Magnesium Chelatase. Biochemistry, 2007, 46, 12788-12794.	2.5	25
155	The solution structure of the PufX polypeptide fromRhodobacter sphaeroides. FEBS Letters, 2006, 580, 6967-6971.	2.8	34
156	Kinetic basis for linking the first two enzymes of chlorophyll biosynthesis. FEBS Journal, 2005, 272, 4532-4539.	4.7	45
157	Making light work of enzyme catalysis: protochlorophyllide oxidoreductase. Trends in Biochemical Sciences, 2005, 30, 642-649.	7.5	166
158	Structural and Biochemical Characterization of Gun4 Suggests a Mechanism for Its Role in Chlorophyll Biosynthesisâ€,‡. Biochemistry, 2005, 44, 7603-7612.	2.5	126
159	The 8.5à Projection Structure of the Core RC–LH1–PufX Dimer of Rhodobacter sphaeroides. Journal of Molecular Biology, 2005, 349, 948-960.	4.2	157
160	The assembly and organisation of photosynthetic membranes in Rhodobacter sphaeroides. Photochemical and Photobiological Sciences, 2005, 4, 1023.	2.9	43
161	Structural Analysis of the Reaction Center Light-harvesting Complex I Photosynthetic Core Complex of Rhodospirillum rubrum Using Atomic Force Microscopy. Journal of Biological Chemistry, 2004, 279, 2063-2068.	3.4	140
162	Magnesium-dependent ATPase Activity and Cooperativity of Magnesium Chelatase from Synechocystis sp. PCC6803. Journal of Biological Chemistry, 2004, 279, 26893-26899.	3.4	76

#	Article	IF	CITATIONS
163	Flexibility and Size Heterogeneity of the LH1 Light Harvesting Complex Revealed by Atomic Force Microscopy. Journal of Biological Chemistry, 2004, 279, 21327-21333.	3.4	113
164	The long-range organization of a native photosynthetic membrane. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17994-17999.	7.1	64
165	Molecular architecture of photosynthetic membranes in Rhodobacter sphaeroides: the role of PufX. EMBO Journal, 2004, 23, 690-700.	7.8	155
166	The native architecture of a photosynthetic membrane. Nature, 2004, 430, 1058-1062.	27.8	435
167	Ultrafast Carotenoid Band Shifts: Experiment and Theoryâ€. Journal of Physical Chemistry B, 2004, 108, 10398-10403.	2.6	42
168	Transient kinetics of the reaction catalysed by magnesium protoporphyrin IX methyltransferase. Biochemical Journal, 2004, 382, 1009-1013.	3.7	27
169	Ultrafast enzymatic reaction dynamics in protochlorophyllide oxidoreductase. Nature Structural and Molecular Biology, 2003, 10, 491-492.	8.2	76
170	The ATPase Activity of the Chll Subunit of Magnesium Chelatase and Formation of a Heptameric AAA+Ringâ€. Biochemistry, 2003, 42, 6912-6920.	2.5	57
171	Identification of intramembrane hydrogen bonding between 131 keto group of bacteriochlorophyll and serine residue $\hat{1}\pm27$ in the LH2 light-harvesting complex. Biochimica Et Biophysica Acta - Bioenergetics, 2003, 1607, 19-26.	1.0	19
172	A Reaction Center-Light-harvesting 1 Complex (RC-LH1) from a Rhodospirillum rubrum Mutant with Altered Esterifying Pigments. Journal of Biological Chemistry, 2003, 278, 23678-23685.	3.4	23
173	Purification and kinetic characterization of the magnesium protoporphyrin IX methyltransferase from Synechocystis PCC6803. Biochemical Journal, 2003, 371, 351-360.	3.7	34
174	Rhodospirillum rubrum Possesses a Variant of the bchP Gene, Encoding Geranylgeranyl-Bacteriopheophytin Reductase. Journal of Bacteriology, 2002, 184, 1578-1586.	2.2	40
175	Current understanding of the function of magnesium chelatase. Biochemical Society Transactions, 2002, 30, 643-645.	3.4	34
176	The biochemistry and enzymology of chlorophyll biosynthesis. Biochemical Society Transactions, 2002, 30, A48-A48.	3.4	0
177	The coupling of ATP hydrolysis to metal ion insertion into porphyrins by magnesium chelatase. Biochemical Society Transactions, 2002, 30, A50-A50.	3.4	0
178	Spectroscopic characterisation of the substrate binding properties of NADPH:protochlorophyllide oxidoreductase (POR). Biochemical Society Transactions, 2002, 30, A74-A74.	3.4	0
179	The coupling of ATP hydrolysis to metal ion insertion into porphyrins by magnesium chelatase. Biochemical Society Transactions, 2002, 30, A75-A75.	3.4	0
180	Dynamics of Energy Transfer from Lycopene to Bacteriochlorophyll in Genetically-Modified LH2 Complexes ofRhodobacter sphaeroidesâ€. Biochemistry, 2002, 41, 4127-4136.	2.5	44

#	Article	IF	CITATIONS
181	Nature of Disorder and Inter-Complex Energy Transfer in LH2 at Room Temperature:  A Three Pulse Photon Echo Peak Shift Study. Journal of Physical Chemistry A, 2002, 106, 7573-7578.	2.5	55
182	Isolation, Size Estimates, and Spectral Heterogeneity of an Oligomeric Series of Light-Harvesting 1 Complexes from Rhodobacter sphaeroides. Biochemistry, 2002, 41, 8698-8707.	2.5	44
183	Functional assembly of the foreign carotenoid lycopene into the photosynthetic apparatus of Rhodobacter sphaeroides, achieved by replacement of the native 3-step phytoene desaturase with its 4-step counterpart from Erwinia herbicola. Molecular Microbiology, 2002, 44, 233-244.	2.5	40
184	Projection structure of the photosynthetic reaction centre-antenna complex of Rhodospirillum rubrum at 8.5 A resolution. EMBO Journal, 2002, 21, 3927-3935.	7.8	137
185	Characterization of the Binding of Deuteroporphyrin IX to the Magnesium Chelatase H Subunit and Spectroscopic Properties of the Complex. Biochemistry, 2001, 40, 9291-9299.	2.5	90
186	Physical Mapping of bchG, orf427, andorf177 in the Photosynthesis Gene Cluster ofRhodobacter sphaeroides: Functional Assignment of the Bacteriochlorophyll Synthetase Gene. Journal of Bacteriology, 2000, 182, 3175-3182.	2.2	38
187	NADPH:protochlorophyllide oxidoreductase from Synechocystis : overexpression, purification and preliminary characterisation. FEBS Letters, 2000, 483, 47-51.	2.8	52
188	Title is missing!. Photosynthesis Research, 1999, 62, 85-98.	2.9	20
189	The photosynthesis gene cluster of Rhodobacter sphaeroides. Photosynthesis Research, 1999, 62, 121-139.	2.9	66
190	A light-harvesting antenna protein retains its folded conformation in the absence of protein-lipid and protein-pigment interactions. , 1999, 49, 361-372.		18
191	Magnesium chelatase from Rhodobacter sphaeroides: initial characterization of the enzyme using purified subunits and evidence for a Bchl–BchD complex. Biochemical Journal, 1999, 337, 243-251.	3.7	73
192	ATPase activity associated with the magnesium-protoporphyrin IX chelatase enzyme of Synechocystis PCC6803: evidence for ATP hydrolysis during Mg2+ insertion, and the MgATP-dependent interaction of the ChII and ChID subunits. Biochemical Journal, 1999, 339, 127-134.	3.7	94
193	Magnesium chelatase from Rhodobacter sphaeroides: initial characterization of the enzyme using purified subunits and evidence for a Bchl‒BchD complex. Biochemical Journal, 1999, 337, 243.	3.7	48
194	Physical Mapping and Functional Assignment of the Geranylgeranyl-Bacteriochlorophyll Reductase Gene, <i>bchP</i> , of <i>Rhodobacter sphaeroides</i> . Journal of Bacteriology, 1999, 181, 7248-7255.	2.2	67
195	Magnesium chelatase from Rhodobacter sphaeroides: initial characterization of the enzyme using purified subunits and evidence for a Bchl-BchD complex. Biochemical Journal, 1999, 337 (Pt 2), 243-51.	3.7	24
196	ATPase activity associated with the magnesium-protoporphyrin IX chelatase enzyme of Synechocystis PCC6803: evidence for ATP hydrolysis during Mg2+ insertion, and the MgATP-dependent interaction of the ChII and ChID subunits. Biochemical Journal, 1999, 339 (Pt 1), 127-34.	3.7	33
197	The LH1–RC core complex of Rhodobacter sphaeroides: interaction between components, time-dependent assembly, and topology of the PufX protein. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1366, 301-316.	1.0	68
198	Isolation of the PufX Protein fromRhodobactercapsulatusandRhodobactersphaeroides:Â Evidence for Its Interaction with the α-Polypeptide of the Core Light-Harvesting Complexâ€. Biochemistry, 1998, 37, 11055-11063.	2.5	61

#	Article	IF	CITATIONS
199	Structural Studies of Wild-Type and Mutant Reaction Centers from an Antenna-Deficient Strain of Rhodobacter sphaeroides:  Monitoring the Optical Properties of the Complex from Bacterial Cell to Crystal. Biochemistry, 1998, 37, 4740-4750.	2.5	83
200	Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides : LH2 at 6 Ã, LH1 and RC-LH1 at 25 Ã 1 1Edited by K. Nagai. Journal of Molecular Biology, 1998, 282, 833-845.	4.2	275
201	Ultrafast Carotenoid Band Shifts Probe Structure and Dynamics in Photosynthetic Antenna Complexesâ€. Biochemistry, 1998, 37, 7057-7061.	2.5	56
202	Determinants of catalytic activity with the use of purified I, D and H subunits of the magnesium protoporphyrin IX chelatase from Synechocystis PCC6803. Biochemical Journal, 1998, 334, 335-344.	3.7	96
203	Evaluation of Structureâ^'Function Relationships in the Core Light-Harvesting Complex of Photosynthetic Bacteria by Reconstitution with Mutant Polypeptidesâ€. Biochemistry, 1997, 36, 3671-3679.	2.5	48
204	Influence of the Protein Binding Site on the Absorption Properties of the Monomeric Bacteriochlorophyll in Rhodobacter sphaeroides LH2 Complex. Biochemistry, 1997, 36, 16282-16287.	2.5	72
205	Site-Directed Modification of the Ligands to the Bacteriochlorophylls of the Light-Harvesting LH1 and LH2 Complexes ofRhodobactersphaeroidesâ€. Biochemistry, 1997, 36, 12625-12632.	2.5	87
206	Characterization of the Light-Harvesting Antennas of Photosynthetic Purple Bacteria by Stark Spectroscopy. 1. LH1 Antenna Complex and the B820 Subunit from Rhodospirillum rubrum. Journal of Physical Chemistry B, 1997, 101, 7284-7292.	2.6	75
207	The Role of βArg-10 in the B800 Bacteriochlorophyll and Carotenoid Pigment Environment within the Light-Harvesting LH2 Complex of Rhodobacter sphaeroides. Biochemistry, 1997, 36, 11282-11291.	2.5	47
208	Functions of Conserved Tryptophan Residues of the Core Light-Harvesting Complex of Rhodobacter sphaeroides. Biochemistry, 1997, 36, 2772-2778.	2.5	94
209	Molecular Characterisation of the pifC Gene Encoding Translation Initiation Factor 3, which is Required for Normal Photosynthetic Complex Formation in Rhodobacter Sphaeroides NCIB 8253. FEBS Journal, 1997, 249, 564-575.	0.2	6
210	The effect of ring currents on carbon chemical shifts in cytochromes. Journal of Biomolecular NMR, 1997, 9, 389-395.	2.8	18
211	Consequences for the Organization of Reaction Center-Light Harvesting Antenna 1 (LH1) Core Complexes of Rhodobacter sphaeroides Arising from Deletion of Amino Acid Residues from the C Terminus of the LH1 1± Polypeptide. Journal of Biological Chemistry, 1996, 271, 3285-3292.	3.4	66
212	Cloning, sequencing and functional assignment of the chlorophyll biosynthesis gene,chlP, ofSynechocystissp. PCC 6803. FEBS Letters, 1996, 389, 126-130.	2.8	62
213	Expression of the chll, chlD, and chlH Genes from the Cyanobacterium Synechocystis PCC6803 in Escherichia coli and Demonstration That the Three Cognate Proteins Are Required for Magnesium-protoporphyrin Chelatase Activity. Journal of Biological Chemistry, 1996, 271, 16662-16667.	3.4	149
214	Three Separate Proteins Constitute the Magnesium Chelatase of Rhodobacter Sphaeroides. FEBS Journal, 1996, 235, 438-443.	0.2	121
215	The purple bacterial photosynthetic unit. Photosynthesis Research, 1996, 48, 55-63.	2.9	103
216	Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 1941-1944.	7.1	197

#	Article	IF	CITATIONS
217	Temporally and spectrally resolved subpicosecond energy transfer within the peripheral antenna complex (LH2) and from LH2 to the core antenna complex in photosynthetic purple bacteria Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 12333-12337.	7.1	124
218	Light-Harvesting Complex: Rings of light. Current Biology, 1995, 5, 826-828.	3.9	4
219	Complete DNA sequence, specific Tn5 insertion map, and gene assignment of the carotenoid biosynthesis pathway of Rhodobacter sphaeroides. Journal of Bacteriology, 1995, 177, 2064-2073.	2.2	88
220	Time-resolved and steady-state spectroscopic analysis of membrane-bound reaction centers from Rhodobacter sphaeroides. Comparisons with detergent-solubilized complexes Biochemistry, 1995, 34, 14712-14721.	2.5	52
221	Energy migration in Rhodobacter sphaeroides mutants altered by mutagenesis of the peripheral LH2 complex or by removal of the core LH1 complex. Biochimica Et Biophysica Acta - Bioenergetics, 1995, 1231, 89-97.	1.0	11
222	Photosynthesis: Many chlorophylls make light work. Current Biology, 1994, 4, 344-346.	3.9	7
223	TheRhodobacter sphaeroidesPufX protein is not required for photosynthetic competence in the absence of a light harvesting system. FEBS Letters, 1994, 349, 349-353.	2.8	80
224	Enhanced rates of subpicosecond energy transfer in blue-shifted light-harvesting LH2 mutants of Rhodobacter sphaeroides Biochemistry, 1994, 33, 8300-8305.	2.5	66
225	Trapping Kinetics in Mutants of the Photosynthetic Purple Bacterium Rhodobacter sphaeroides: Influence of the Charge Separation Rate and Consequences for the Rate-Limiting Step in the Light-Harvesting Process. Biochemistry, 1994, 33, 3143-3147.	2.5	77
226	The relationship between carotenoid biosynthesis and the assembly of the light-harvesting LH2 complex in <i>Rhodobacter sphaeroides</i> . Biochemical Journal, 1994, 298, 197-205.	3.7	135
227	Blue shifts in bacteriochlorophyll absorbance correlate with changed hydrogen bonding patterns in light-harvesting 2 mutants of Rhodobacter sphaeroides with alterations at I±-Tyr-44 and I±-Tyr-45. Biochemical Journal, 1994, 299, 695-700.	3.7	152
228	Early steps in carotenoid biosynthesis: sequences and transcriptional analysis of the crtI and crtB genes of Rhodobacter sphaeroides and overexpression and reactivation of crtI in Escherichia coli and R. sphaeroides. Journal of Bacteriology, 1994, 176, 3859-3869.	2.2	56
229	Introduction of new carotenoids into the bacterial photosynthetic apparatus by combining the carotenoid biosynthetic pathways of Erwinia herbicola and Rhodobacter sphaeroides. Journal of Bacteriology, 1994, 176, 3692-3697.	2.2	70
230	Modification of a hydrogen bond to a bacteriochlorophyll a molecule in the light-harvesting 1 antenna of Rhodobacter sphaeroides Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 7124-7128.	7.1	116
231	Genetic analysis of the bchC and bchA genes of Rhodobacter sphaeroides. Molecular Genetics and Genomics, 1993, 236-236, 227-234.	2.4	36
232	SITEâ€DIRECTED MUTAGENESIS OF THE LH2 LIGHTâ€HARVESTING COMPLEX OF Rhodobacter sphaeroides: CHANGING βLys23 TO Gin RESULTS IN A SHIFT IN THE 850 nm ABSORPTION PEAK. Photochemistry and Photobiology, 1993, 57, 2-5.	2.5	19
233	Protein engineering of bacterial light-harvesting complexes. Biochemical Society Transactions, 1993, 21, 41-43.	3.4	8
234	Genetically modified photosynthetic antenna complexes with blueshifted absorbance bands. Nature, 1992, 355, 848-850.	27.8	256

#	Article	IF	CITATIONS
235	A putative anaerobic coproporphyrinogen III oxidase in Rhodobacter sphaeroides. I. Molecular cloning, transposon mutagenesis and sequence analysis of the gene. Molecular Microbiology, 1992, 6, 3159-3169.	2.5	74
236	DNA sequencing and complementation/deletion analysis of the bchA-puf operon region of Rhodobacter sphaeroides: in vivo mapping of the oxygen-regulated puf promoter. Molecular Microbiology, 1991, 5, 2649-2661.	2.5	54
237	Localized transposon Tn5 mutagenesis of the photosynthetic gene cluster of Rhodobacter sphaeroides. Molecular Microbiology, 1990, 4, 977-989.	2.5	131
238	Energy-transfer dynamics in three light-harvesting mutants of Rhodobacter sphaeroides: a picosecond spectroscopy study. Biochemistry, 1990, 29, 3203-3207.	2.5	49
239	Construction of a physical map of the 45 kb photosynthetic gene cluster of Rhodobacter sphaeroides. Archives of Microbiology, 1989, 151, 454-458.	2.2	29
240	Temperature dependence of energy transfer from the long wavelength antenna BChl-896 to the reaction center in Rhodospirillum rubrum, Rhodobacter sphaeroides (w.t. and M21 mutant) from 77 to 177K, studied by picosecond absorption spectroscopy. Photosynthesis Research, 1989, 22, 211-217.	2.9	114
241	Oligomerization states and associations of light-harvesting pigment-protein complexes of Rhodobacter sphaeroides as analyzed by lithium dodecyl sulfate-polyacrylamide gel electrophoresis. Biochemistry, 1988, 27, 3459-3467.	2.5	126
242	Transfer of Genes Coding for Apoproteins of Reaction Centre and Light-harvesting LH1 Complexes to Rhodobacter sphaeroides. Microbiology (United Kingdom), 1988, 134, 1471-1480.	1.8	23
243	Cloning and Oxygen-regulated Expression of the Bacteriochlorophyll Biosynthesis Genes bch E, B, A and C of Rhodobacter sphaeroides. Microbiology (United Kingdom), 1988, 134, 1491-1497.	1.8	11
244	Isolation and characterization of the pigment-protein complexes of Rhodopseudomonas sphaeroides by lithium dodecyl sulfate/polyacrylamide gel electrophoresis Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 87-91.	7.1	186
245	Atoms to Phenotypes: Molecular Design Principles of Cellular Energy Metabolism. SSRN Electronic Journal, 0, , .	0.4	1