Aneta D Petelska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8394068/publications.pdf Version: 2024-02-01

ANETA D PETELSKA

#	Article	IF	CITATIONS
1	Study of Nano h-BN Impact on Lubricating Properties of Selected Oil Mixtures. Materials, 2022, 15, 2052.	1.3	3
2	How the replacement of cholesterol by 25-hydroxycholesterol affects the interactions with sphingolipids: The Langmuir Monolayer Study complemented with theoretical calculations. Journal of the Royal Society Interface, 2021, 18, 20210050.	1.5	6
3	Experimental and Theoretical Approaches to Describing Interactions in Natural Cell Membranes Occurring as a Result of Fatal Alcohol Poisoning. Membranes, 2021, 11, 189.	1.4	4
4	Interactions between Phosphatidylcholine and Kaempferol or Myristicin: Langmuir Monolayers and Microelectrophoretic Studies. International Journal of Molecular Sciences, 2021, 22, 4729.	1.8	5
5	25-hydroxycholesterol interacts differently with lipids of the inner and outer membrane leaflet – The Langmuir monolayer study complemented with theoretical calculations. Journal of Steroid Biochemistry and Molecular Biology, 2021, 211, 105909.	1.2	9
6	Thermodynamic, viscoelastic and electrical properties of lipid membranes in the presence of astaxanthin. Biophysical Chemistry, 2020, 258, 106318.	1.5	11
7	Interactions between Beta-2-Glycoprotein-1 and Phospholipid Bilayer—A Molecular Dynamic Study. Membranes, 2020, 10, 396.	1.4	4
8	The Equilibria in Lipid–Lipoic Acid Systems: Monolayers, Microelectrophoretic and Interfacial Tension Studies. Molecules, 2020, 25, 3678.	1.7	7
9	Research on the Influence of the Manufacturing Process Conditions of Iron Sintered with the Addition of Layered Lubricating Materials on its Selected Properties. Materials, 2020, 13, 4782.	1.3	1
10	Unusual Behavior of the Bipolar Molecule 25-Hydroxycholesterol at the Air/Water Interface—Langmuir Monolayer Approach Complemented with Theoretical Calculations. Journal of Physical Chemistry B, 2020, 124, 1104-1114.	1.2	15
11	Equilibria in DPPC-Diosgenin and DPPC-Diosgenin Acetate Bilayer Lipid Membranes: Interfacial Tension and Microelectrophoretic Studies. Coatings, 2020, 10, 368.	1.2	3
12	The Amphoteric and Hydrophilic Properties of Cartilage Surface in Mammalian Joints: Interfacial Tension and Molecular Dynamics Simulation Studies. Molecules, 2019, 24, 2248.	1.7	3
13	Understanding the Unique Role of Phospholipids in the Lubrication of Natural Joints: An Interfacial Tension Study. Coatings, 2019, 9, 264.	1.2	9
14	Influence of Manufacturing Technology on the Structure of 80W–20Re Heavy Sinters. Materials, 2019, 12, 3965.	1.3	0
15	Hyaluronic acid and phospholipid interactions useful for repaired articular cartilage surfaces—a mini review toward tribological surgical adjuvants. Colloid and Polymer Science, 2017, 295, 403-412.	1.0	26
16	The effect of divalent ions on L-α-phosphatidylcholine from egg yolk monolayers at the air/water interface. Journal of Biological Inorganic Chemistry, 2017, 22, 1187-1195.	1.1	6
17	Equilibria Between Cell Membranes and Electrolyte Solution: Effect of Fatal Accidental Hypothermia. Journal of Membrane Biology, 2016, 249, 375-380.	1.0	3
18	The Effect of Fatal Carbon Monoxide Poisoning on the Equilibria Between Cell Membranes and the Electrolyte Solution. Journal of Membrane Biology, 2015, 248, 157-161.	1.0	10

ANETA D PETELSKA

#	Article	IF	CITATIONS
19	The Equilibria Between Monovalent Ions and Phosphatidylcholine Monolayer at the Air/Water Interface. Journal of Membrane Biology, 2013, 246, 467-471.	1.0	9
20	Relationship Between Wettability and Lubrication Characteristics of the Surfaces of Contacting Phospholipid-Based Membranes. Cell Biochemistry and Biophysics, 2013, 65, 335-345.	0.9	29
21	The Effect of Fatal Carbon Monoxide Poisoning on the Surface Charge of Blood Cells. Journal of Membrane Biology, 2013, 246, 717-722.	1.0	12
22	Phosphatidylcholine — Mg2+ equilibria in a monolayer at the air/water interface. Open Chemistry, 2013, 11, 424-429.	1.0	4
23	Interfacial tension of bilayer lipid membranes. Open Chemistry, 2012, 10, 16-26.	1.0	24
24	Changes in Surface-Charge Density of Blood Cells After Sudden Unexpected Death. Journal of Membrane Biology, 2012, 245, 185-190.	1.0	6
25	The Effect of Contrast Medium SonoVue® on the Electric Charge Density of Blood Cells. Journal of Membrane Biology, 2012, 245, 15-22.	1.0	10
26	Interfacial Tension of the Lipid Membrane Formed from Phosphatidylcholine–Decanoic Acid and Phosphatidylcholine–Decylamine Systems. Journal of Membrane Biology, 2011, 241, 103-108.	1.0	4
27	The Equilibria of Lipid–K+ Ions in Monolayer at the Air/Water Interface. Journal of Membrane Biology, 2011, 244, 61-66.	1.0	10
28	The Equilibrium of Phosphatidylcholine–Amino Acid System in Monolayer at the Air/water Interface. Cell Biochemistry and Biophysics, 2011, 60, 155-160.	0.9	10
29	The Interfacial Tension of the Lipid Membrane Formed from Lipid–Amino Acid Systems. Cell Biochemistry and Biophysics, 2011, 61, 289-296.	0.9	5
30	The equilibria of phosphatidylcholine–fatty acid and phosphatidylcholine–amine in monolayers at the air/water interface. Colloids and Surfaces B: Biointerfaces, 2011, 82, 340-344.	2.5	19
31	Equilibria of Phosphatidylcholine â^ Ca ²⁺ lons in Monolayer at the Air/Water Interface. Langmuir, 2010, 26, 13359-13363.	1.6	11
32	Complex Formation Equilibria in Two-Component Bilayer Lipid Membrane: Interfacial Tension Method. Journal of Membrane Biology, 2009, 228, 71-77.	1.0	5
33	The Equilibria of Phosphatidylethanolamine-Cholesterol and Phosphatidylcholine–Phosphatidylethanolamine in Monolayers at the Air/Water Interface. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 607-614.	1.2	19
34	Interfacial tension of the lipid membrane formed from lipid-fatty acid and lipid-amine systems. Bioelectrochemistry, 2007, 70, 28-32.	2.4	13
35	Interfacial tension of phosphatidylcholine–phosphatidylserine system in bilayer lipid membrane. Biophysical Chemistry, 2006, 120, 199-206.	1.5	6
36	The Interfacial Tension of the Lipid Membrane Formed From Lipid–Cholesterol and Lipid–Lipid Systems. Cell Biochemistry and Biophysics, 2006, 44, 205-212.	0.9	21

ANETA D PETELSKA

#	Article	IF	CITATIONS
37	Impedance analysis of phosphatidylcholine membranes modified with valinomycin. European Biophysics Journal, 2006, 35, 239-246.	1.2	23
38	Impedance analysis of phosphatidylcholine–cholesterol system in bilayer lipid membranes. Electrochimica Acta, 2005, 50, 2155-2161.	2.6	33
39	The effect of the presence of valinomycin on the interfacial tension of lecithin membrane. Colloids and Surfaces B: Biointerfaces, 2005, 44, 158-162.	2.5	2
40	The effect of interaction between K+ ions and gramicidin D on the lecithin membrane interfacial tension. Bioelectrochemistry, 2005, 65, 143-148.	2.4	3
41	Acid–base equilibria at interface separating electrolyte solution and lipid bilayer formed from phosphatidylserine. Biophysical Chemistry, 2003, 104, 5-11.	1.5	6
42	Acid–base equilibria at interface separating electrolyte solution and lipid bilayer formed from phosphatidylcholine. Biophysical Chemistry, 2003, 104, 13-19.	1.5	14
43	Capacitance and resistance of the bilayer lipid membrane formed of phosphatidylcholine and cholesterol. Cellular and Molecular Biology Letters, 2003, 8, 5-18.	2.7	23
44	Effect of pH on the interfacial tension of bilayer lipid membrane formed from phosphatidylcholine or phosphatidylserine. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1561, 135-146.	1.4	59
45	Interfacial tension of bilayer lipid membrane formed from phosphatidylethanolamine. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1567, 79-86.	1.4	27
46	Effect of pH on the Interfacial Tension of Lipid Bilayer Membrane. Biophysical Journal, 2000, 78, 812-817.	0.2	114
47	Interfacial tension of the two-component bilayer lipid membrane modelling of cell membrane. Bioelectrochemistry, 1998, 46, 199-204.	1.0	42