Siyu Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8393595/publications.pdf Version: 2024-02-01

SIVIL CHEN

#	Article	IF	CITATIONS
1	Modeling the transport and radiative forcing of Taklimakan dust over the Tibetan Plateau: A case study in the summer of 2006. Journal of Geophysical Research D: Atmospheres, 2013, 118, 797-812.	3.3	136
2	Uncertainty in modeling dust mass balance and radiative forcing from size parameterization. Atmospheric Chemistry and Physics, 2013, 13, 10733-10753.	4.9	128
3	Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011. Science China Earth Sciences, 2017, 60, 1338-1355.	5.2	127
4	Emission, transport, and radiative effects of mineral dust from the Taklimakan and Gobi deserts: comparison of measurements and model results. Atmospheric Chemistry and Physics, 2017, 17, 2401-2421.	4.9	115
5	Regional modeling of dust mass balance and radiative forcing over East Asia using WRF-Chem. Aeolian Research, 2014, 15, 15-30.	2.7	112
6	Fugitive Road Dust PM _{2.5} Emissions and Their Potential Health Impacts. Environmental Science & Technology, 2019, 53, 8455-8465.	10.0	91
7	Long-term trends of dust events over Tibetan Plateau during 1961–2010. Atmospheric Environment, 2016, 125, 188-198.	4.1	78
8	An overview of mineral dust modeling over East Asia. Journal of Meteorological Research, 2017, 31, 633-653.	2.4	61
9	Quantifying contributions of natural and anthropogenic dust emission from different climatic regions. Atmospheric Environment, 2018, 191, 94-104.	4.1	56
10	Effects of atmospheric dynamics and aerosols on the fraction of supercooled water clouds. Atmospheric Chemistry and Physics, 2017, 17, 1847-1863.	4.9	49
11	Sensitivity of simulating a dust storm over Central Asia to different dust schemes using the WRF-Chem model. Atmospheric Environment, 2019, 207, 16-29.	4.1	45
12	The Spatial and Temporal Distributions of Absorbing Aerosols over East Asia. Remote Sensing, 2017, 9, 1050.	4.0	44
13	Influence of Dynamic and Thermal Forcing on the Meridional Transport of Taklimakan Desert Dust in Spring and Summer. Journal of Climate, 2019, 32, 749-767.	3.2	42
14	Modeling the contributions of Northern Hemisphere dust sources to dust outflow from East Asia. Atmospheric Environment, 2019, 202, 234-243.	4.1	39
15	Vertical Structures of Dust Aerosols over East Asia Based on CALIPSO Retrievals. Remote Sensing, 2019, 11, 701.	4.0	39
16	Impact of Arctic amplification on declining spring dust events in East Asia. Climate Dynamics, 2020, 54, 1913-1935.	3.8	39
17	Dust modeling over East Asia during the summer of 2010 using the WRF-Chem model. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 213, 1-12.	2.3	29
18	Estimations of indirect and direct anthropogenic dust emission at the global scale. Atmospheric Environment, 2019, 200, 50-60.	4.1	26

SIYU CHEN

#	Article	IF	CITATIONS
19	Double Trouble of Air Pollution by Anthropogenic Dust. Environmental Science & Technology, 2022, 56, 761-769.	10.0	21
20	Three‥ear Continuous Observation of Pure and Polluted Dust Aerosols Over Northwest China Using the Groundâ€Based Lidar and Sun Photometer Data. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1118-1131.	3.3	20
21	WRF-Chem v3.9 simulations of the East Asian dust storm in May 2017: modeling sensitivities to dust emission and dry deposition schemes. Geoscientific Model Development, 2020, 13, 2125-2147.	3.6	20
22	Spatio-temporal trends of dust emissions triggered by desertification in China. Catena, 2021, 200, 105160.	5.0	18
23	Sources, characteristics and climate impact of light-absorbing aerosols over the Tibetan Plateau. Earth-Science Reviews, 2022, 232, 104111.	9.1	18
24	Ambient PM _{2.5} and Related Health Impacts of Spontaneous Combustion of Coal and Coal Gangue. Environmental Science & Samp; Technology, 2021, 55, 5763-5771.	10.0	16
25	Desert dust as a significant carrier of atmospheric mercury. Environmental Pollution, 2020, 267, 115442.	7.5	15
26	Impacts of Two East Asian Atmospheric Circulation Modes on Black Carbon Aerosol Over the Tibetan Plateau in Winter. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032458.	3.3	10
27	Direct Radiative Forcing Induced by Lightâ€Absorbing Aerosols in Different Climate Regions Over East Asia. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032228.	3.3	10
28	Protective potential of <i>Angelica sinensis</i> polysaccharide extract against ethylene glycol-induced calcium oxalate urolithiasis. Renal Failure, 2018, 40, 618-627.	2.1	6
29	The role of boundary layer height in India on transboundary pollutions to the Tibetan Plateau. Science of the Total Environment, 2022, 837, 155816.	8.0	4
30	Differences in Sulfate Aerosol Radiative Forcing between the Daytime and Nighttime over East Asia Using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) Model. Atmosphere, 2018, 9, 441.	2.3	3
31	Influence of Dust Aerosols on Snow Cover Over the Tibetan Plateau. Frontiers in Environmental Science, 2022, 10, .	3.3	3
32	Aerosol optical properties and its direct radiative forcing over Tibetan Plateau from 2006 to 2017. Particuology, 2023, 74, 64-73.	3.6	2
33	Dynamic Dust Source Regions and the Associated Natural and Anthropogenic Dust Emissions at the Global Scale. Frontiers in Earth Science, 2022, 10, .	1.8	0