Manabu Shiraiwa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8393561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lodine emission from the reactive uptake of ozone to simulated seawater. Environmental Sciences: Processes and Impacts, 2023, 25, 254-263.	1.7	2
2	Iron-Facilitated Organic Radical Formation from Secondary Organic Aerosols in Surrogate Lung Fluid. Environmental Science & Technology, 2022, 56, 7234-7243.	4.6	20
3	How should we define an indoor surface?. Indoor Air, 2022, 32, e12955.	2.0	11
4	Predicting glass transition temperature and melting point of organic compounds <i>via</i> machine learning and molecular embeddings. Environmental Science Atmospheres, 2022, 2, 362-374.	0.9	8
5	Volatile products generated from reactions between ozone and human skin lipids: A modelling estimation. Building and Environment, 2022, 217, 109068.	3.0	7
6	Predicting Spatial Variations in Multiple Measures of PM _{2.5} Oxidative Potential and Magnetite Nanoparticles in Toronto and Montreal, Canada. Environmental Science & Technology, 2022, 56, 7256-7265.	4.6	4
7	Effects of Acidity on Reactive Oxygen Species Formation from Secondary Organic Aerosols. ACS Environmental Au, 2022, 2, 336-345.	3.3	12
8	Multiphase Ozonolysis of Oleic Acid-Based Lipids: Quantitation of Major Products and Kinetic Multilayer Modeling. Environmental Science & Technology, 2022, 56, 7716-7728.	4.6	14
9	Why Indoor Chemistry Matters: A National Academies Consensus Report. Environmental Science & Technology, 2022, 56, 10560-10563.	4.6	12
10	Assessing Human Exposure to SVOCs in Materials, Products, and Articles: A Modular Mechanistic Framework. Environmental Science & Technology, 2021, 55, 25-43.	4.6	54
11	Emerging investigator series: chemical and physical properties of organic mixtures on indoor surfaces during HOMEChem. Environmental Sciences: Processes and Impacts, 2021, 23, 559-568.	1.7	12
12	Mass accommodation and gas–particle partitioning in secondary organic aerosols: dependence on diffusivity, volatility, particle-phase reactions, and penetration depth. Atmospheric Chemistry and Physics, 2021, 21, 1565-1580.	1.9	25
13	A Population-Based Cohort Study of Respiratory Disease and Long-Term Exposure to Iron and Copper in Fine Particulate Air Pollution and Their Combined Impact on Reactive Oxygen Species Generation in Human Lungs. Environmental Science & Technology, 2021, 55, 3807-3818.	4.6	39
14	Non-equilibrium interplay between gas–particle partitioning and multiphase chemical reactions of semi-volatile compounds: mechanistic insights and practical implications for atmospheric modeling of polycyclic aromatic hydrocarbons. Atmospheric Chemistry and Physics, 2021, 21, 6175-6198.	1.9	10
15	Accurate Prediction of Organic Aerosol Evaporation Using Kinetic Multilayer Modeling and the Stokes–Einstein Equation. Journal of Physical Chemistry A, 2021, 125, 3444-3456.	1.1	13
16	Coexistence of three liquid phases in individual atmospheric aerosol particles. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	46
17	Within-City Variation in Reactive Oxygen Species from Fine Particle Air Pollution and COVID-19. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 168-177.	2.5	17
18	Kinetic multiâ€layer model of film formation, growth, and chemistry (KMâ€FILM): Boundary layer processes, multiâ€layer adsorption, bulk diffusion, and heterogeneous reactions. Indoor Air, 2021, 31, 2070-2083.	2.0	14

#	Article	IF	CITATIONS
19	Estimation of secondary organic aerosol viscosity from explicit modeling of gas-phase oxidation of isoprene and <i>α</i> -pinene. Atmospheric Chemistry and Physics, 2021, 21, 10199-10213.	1.9	10
20	Diurnal and Seasonal Variations in the Phase State of Secondary Organic Aerosol Material over the Contiguous US Simulated in CMAQ. ACS Earth and Space Chemistry, 2021, 5, 1971-1982.	1.2	12
21	Environmentally Persistent Free Radicals, Reactive Oxygen Species Generation, and Oxidative Potential of Highway PM _{2.5} . ACS Earth and Space Chemistry, 2021, 5, 1865-1875.	1.2	28
22	Aqueous-phase reactive species formed by fine particulate matter from remote forests and polluted urban air. Atmospheric Chemistry and Physics, 2021, 21, 10439-10455.	1.9	6
23	Spatial variations in PM2.5 oxidative potential in Toronto and Montreal, Canada. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
24	Spatial and temporal scales of variability for indoor air constituents. Communications Chemistry, 2021, 4, .	2.0	26
25	Particle Size Distribution Dynamics Can Help Constrain the Phase State of Secondary Organic Aerosol. Environmental Science & Technology, 2021, 55, 1466-1476.	4.6	22
26	Behavior of carbon monoxide, nitrogen oxides, and ozone in a vehicle cabin with a passenger. Environmental Sciences: Processes and Impacts, 2021, 23, 302-310.	1.7	2
27	Toward closure between predicted and observed particle viscosity over a wide range of temperatures and relative humidity. Atmospheric Chemistry and Physics, 2021, 21, 1127-1141.	1.9	12
28	Humidity-Dependent Viscosity of Secondary Organic Aerosol from Ozonolysis of β-Caryophyllene: Measurements, Predictions, and Implications. ACS Earth and Space Chemistry, 2021, 5, 305-318.	1.2	32
29	Viscosity and liquid–liquid phase separation in healthy and stressed plant SOA. Environmental Science Atmospheres, 2021, 1, 140-153.	0.9	14
30	Superoxide Formation from Aqueous Reactions of Biogenic Secondary Organic Aerosols. Environmental Science & Technology, 2021, 55, 260-270.	4.6	35
31	Long-term exposure to iron and copper in fine particulate air pollution and their combined impact on reactive oxygen species concentration in lung fluid: a population-based cohort study of cardiovascular disease incidence and mortality in Toronto, Canada. International Journal of	0.9	25
32	Hydroxyl Radical Production by Air Pollutants in Epithelial Lining Fluid Governed by Interconversion and Scavenging of Reactive Oxygen Species. Environmental Science & (amp; Technology, 2021, 55, 14069-14079.	4.6	39
33	Global Distribution of the Phase State and Mixing Times within Secondary Organic Aerosol Particles in the Troposphere Based on Room-Temperature Viscosity Measurements. ACS Earth and Space Chemistry, 2021, 5, 3458-3473.	1.2	14
34	Unexpectedly High Indoor HONO Concentrations Associated with Photochemical NO ₂ Transformation on Glass Windows. Environmental Science & Technology, 2020, 54, 15680-15688.	4.6	35
35	Indoor aerosol water content and phase state in U.S. residences: impacts of relative humidity, aerosol mass and composition, and mechanical system operation. Environmental Sciences: Processes and Impacts, 2020, 22, 2031-2057.	1.7	20
36	Indoor Surface Chemistry: Developing a Molecular Picture of Reactions on Indoor Interfaces. CheM, 2020, 6, 3203-3218.	5.8	70

#	Article	IF	CITATIONS
37	Reactive Uptake of Ozone to Simulated Seawater: Evidence for Iodide Depletion. Journal of Physical Chemistry A, 2020, 124, 9844-9853.	1.1	6
38	Unexpected formation of oxygen-free products and nitrous acid from the ozonolysis of the neonicotinoid nitenpyram. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11321-11327.	3.3	14
39	Spatial distributions of ozonolysis products from human surfaces in ventilated rooms. Indoor Air, 2020, 30, 1229-1240.	2.0	18
40	Aqueous-Phase Decomposition of Isoprene Hydroxy Hydroperoxide and Hydroxyl Radical Formation by Fenton-like Reactions with Iron Ions. Journal of Physical Chemistry A, 2020, 124, 5230-5236.	1.1	21
41	Multiphase Chemistry Controls Inorganic Chlorinated and Nitrogenated Compounds in Indoor Air during Bleach Cleaning. Environmental Science & Technology, 2020, 54, 1730-1739.	4.6	87
42	Increase of High Molecular Weight Organosulfate With Intensifying Urban Air Pollution in the Megacity Beijing. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032200.	1.2	30
43	Multiscale Modeling of Human Skin Oil-Induced Indoor Air Chemistry: Combining Kinetic Models and Molecular Dynamics. Journal of Physical Chemistry B, 2020, 124, 3836-3843.	1.2	28
44	Predictions of the glass transition temperature and viscosity of organic aerosols from volatility distributions. Atmospheric Chemistry and Physics, 2020, 20, 8103-8122.	1.9	47
45	Optimization of process models for determining volatility distribution and viscosity of organic aerosols from isothermal particle evaporation data. Atmospheric Chemistry and Physics, 2019, 19, 9333-9350.	1.9	9
46	Predictions of diffusion rates of large organic molecules in secondary organic aerosols using the Stokes–Einstein and fractional Stokes–Einstein relations. Atmospheric Chemistry and Physics, 2019, 19, 10073-10085.	1.9	35
47	Indoor boundary layer chemistry modeling. Indoor Air, 2019, 29, 956-967.	2.0	17
48	Radical Formation by Fine Particulate Matter Associated with Highly Oxygenated Molecules. Environmental Science & Technology, 2019, 53, 12506-12518.	4.6	45
49	Oxidative Potential of Particulate Matter and Generation of Reactive Oxygen Species in Epithelial Lining Fluid. Environmental Science & Technology, 2019, 53, 12784-12792.	4.6	73
50	A molecular picture of surface interactions of organic compounds on prevalent indoor surfaces: limonene adsorption on SiO ₂ . Chemical Science, 2019, 10, 2906-2914.	3.7	52
51	The impact of clothing on ozone and squalene ozonolysis products in indoor environments. Communications Chemistry, 2019, 2, .	2.0	54
52	Effects of Phase State and Phase Separation on Dimethylamine Uptake of Ammonium Sulfate and Ammonium Sulfate–Sucrose Mixed Particles. ACS Earth and Space Chemistry, 2019, 3, 1268-1278.	1.2	10
53	Timescales of secondary organic aerosols to reach equilibrium at various temperatures and relative humidities. Atmospheric Chemistry and Physics, 2019, 19, 5959-5971.	1.9	53
54	Occurrence of Aerosol Proteinaceous Matter in Urban Beijing: An Investigation on Composition, Sources, and Atmospheric Processes During the "APEC Blue―Period. Environmental Science & Technology, 2019, 53, 7380-7390.	4.6	26

#	Article	IF	CITATIONS
55	Multiphase reactivity of polycyclic aromatic hydrocarbons is driven by phase separation and diffusion limitations. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11658-11663.	3.3	86
56	Modelling consortium for chemistry of indoor environments (MOCCIE): integrating chemical processes from molecular to room scales. Environmental Sciences: Processes and Impacts, 2019, 21, 1240-1254.	1.7	36
57	Liquid–liquid phase separation and viscosity within secondary organic aerosol generated from diesel fuel vapors. Atmospheric Chemistry and Physics, 2019, 19, 12515-12529.	1.9	27
58	Visualizing reaction and diffusion in xanthan gum aerosol particles exposed to ozone. Physical Chemistry Chemical Physics, 2019, 21, 20613-20627.	1.3	15
59	Effect of relative humidity on the composition of secondary organic aerosol from the oxidation of toluene. Atmospheric Chemistry and Physics, 2018, 18, 1643-1652.	1.9	64
60	Temperature effect on phase state and reactivity controls atmospheric multiphase chemistry and transport of PAHs. Science Advances, 2018, 4, eaap7314.	4.7	100
61	Spatial variations in the estimated production of reactive oxygen species in the epithelial lung lining fluid by iron and copper in fine particulate air pollution. Environmental Epidemiology, 2018, 2, e020.	1.4	22
62	Understanding interactions of organic nitrates with the surface and bulk of organic films: implications for particle growth in the atmosphere. Environmental Sciences: Processes and Impacts, 2018, 20, 1593-1610.	1.7	12
63	Molecular Corridors, Volatility and Particle Phase State in Secondary Organic Aerosols. ACS Symposium Series, 2018, , 209-244.	0.5	2
64	Reactive Oxygen Species Formed by Secondary Organic Aerosols in Water and Surrogate Lung Fluid. Environmental Science & Technology, 2018, 52, 11642-11651.	4.6	59
65	Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition. Atmospheric Chemistry and Physics, 2018, 18, 6331-6351.	1.9	116
66	Influence of particle viscosity on mass transfer and heterogeneous ozonolysis kinetics in aqueous–sucrose–maleic acid aerosol. Physical Chemistry Chemical Physics, 2018, 20, 15560-15573.	1.3	39
67	Imaging Molecular Reaction and Diffusion in Organic Aerosol Particles. Microscopy and Microanalysis, 2018, 24, 496-497.	0.2	0
68	Aqueous Photochemistry of Secondary Organic Aerosol of α-Pinene and α-Humulene Oxidized with Ozone, Hydroxyl Radical, and Nitrate Radical. Journal of Physical Chemistry A, 2017, 121, 1298-1309.	1.1	51
69	Condensed-phase biogenic–anthropogenic interactions with implications for cold cloud formation. Faraday Discussions, 2017, 200, 165-194.	1.6	40
70	Kinetics, mechanisms and ionic liquids in the uptake of n-butylamine onto low molecular weight dicarboxylic acids. Physical Chemistry Chemical Physics, 2017, 19, 4827-4839.	1.3	12
71	Cloud droplet activation through oxidation of organic aerosol influenced by temperature and particle phase state. Geophysical Research Letters, 2017, 44, 1583-1591.	1.5	53
72	Reactive oxygen species formed in aqueous mixtures of secondary organic aerosols and mineral dust influencing cloud chemistry and public health in the Anthropocene. Faraday Discussions, 2017, 200, 251-270.	1.6	51

Manabu Shiraiwa

#	Article	IF	CITATIONS
73	Atmospheric protein chemistry influenced by anthropogenic air pollutants: nitration and oligomerization upon exposure to ozone and nitrogen dioxide. Faraday Discussions, 2017, 200, 413-427.	1.6	37
74	Factors controlling the evaporation of secondary organic aerosol from αâ€pinene ozonolysis. Geophysical Research Letters, 2017, 44, 2562-2570.	1.5	95
75	Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals. Analytical and Bioanalytical Chemistry, 2017, 409, 2411-2420.	1.9	62
76	Characterization and differentiation of rock varnish types from different environments by microanalytical techniques. Chemical Geology, 2017, 459, 91-118.	1.4	31
77	Global distribution of particle phase state in atmospheric secondary organic aerosols. Nature Communications, 2017, 8, 15002.	5.8	295
78	Proteins and Amino Acids in Fine Particulate Matter in Rural Guangzhou, Southern China: Seasonal Cycles, Sources, and Atmospheric Processes. Environmental Science & Technology, 2017, 51, 6773-6781.	4.6	58
79	Air Pollution and Climate Change Effects on Allergies in the Anthropocene: Abundance, Interaction, and Modification of Allergens and Adjuvants. Environmental Science & Technology, 2017, 51, 4119-4141.	4.6	193
80	Chemical kinetics of multiphase reactions between ozone and human skin lipids: Implications for indoor air quality and health effects. Indoor Air, 2017, 27, 816-828.	2.0	64
81	Heterogeneous OH Oxidation, Shielding Effects, and Implications for the Atmospheric Fate of Terbuthylazine and Other Pesticides. Environmental Science & Technology, 2017, 51, 13749-13754.	4.6	24
82	Aerosol Health Effects from Molecular to Global Scales. Environmental Science & Technology, 2017, 51, 13545-13567.	4.6	384
83	Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. Atmospheric Chemistry and Physics, 2017, 17, 2103-2162.	1.9	307
84	Regional modelling of polycyclic aromatic hydrocarbons: WRF-Chem-PAH model development and East Asia case studies. Atmospheric Chemistry and Physics, 2017, 17, 12253-12267.	1.9	3
85	Compositional evolution of particle-phase reaction products and water in the heterogeneous OH oxidation of model aqueous organic aerosols. Atmospheric Chemistry and Physics, 2017, 17, 14415-14431.	1.9	17
86	Technical note: Monte Carlo genetic algorithm (MCGA) for model analysis of multiphase chemical kinetics to determine transport and reaction rate coefficients using multiple experimental data sets. Atmospheric Chemistry and Physics, 2017, 17, 8021-8029.	1.9	33
87	Organic Nitrate Contribution to New Particle Formation and Growth in Secondary Organic Aerosols from α-Pinene Ozonolysis. Environmental Science & Technology, 2016, 50, 6334-6342.	4.6	47
88	Plasma–liquid interactions: a review and roadmap. Plasma Sources Science and Technology, 2016, 25, 053002.	1.3	1,111
89	Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles. Environmental Science & Technology, 2016, 50, 11815-11824.	4.6	237
90	Airborne characterization of subsaturated aerosol hygroscopicity and dry refractive index from the surface to 6.5 km during the SEAC ⁴ RS campaign. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4188-4210.	1.2	67

#	Article	IF	CITATIONS
91	Ozone uptake on glassy, semi-solid and liquid organic matter and the role of reactive oxygen intermediates in atmospheric aerosol chemistry. Physical Chemistry Chemical Physics, 2016, 18, 12662-12674.	1.3	117
92	Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract. Scientific Reports, 2016, 6, 32916.	1.6	228
93	Hydroxyl radicals from secondary organic aerosol decomposition in water. Atmospheric Chemistry and Physics, 2016, 16, 1761-1771.	1.9	138
94	Discontinuities in hygroscopic growth below and above water saturation for laboratory surrogates of oligomers in organic atmospheric aerosols. Atmospheric Chemistry and Physics, 2016, 16, 12767-12792.	1.9	34
95	The effect of viscosity and diffusion on the HO ₂ uptake by sucrose and secondary organic aerosol particles. Atmospheric Chemistry and Physics, 2016, 16, 13035-13047.	1.9	29
96	Quantification of environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol particles. Atmospheric Chemistry and Physics, 2016, 16, 13105-13119.	1.9	110
97	Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols. Atmospheric Chemistry and Physics, 2016, 16, 3327-3344.	1.9	170
98	Direct imaging of changes in aerosol particle viscosity upon hydration and chemical aging. Chemical Science, 2016, 7, 1357-1367.	3.7	101
99	Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: Volume 2. Diffusivities of organic compounds, pressure-normalised mean free paths, and average Knudsen numbers for gas uptake calculations. Atmospheric Chemistry and Physics, 2015, 15, 5585-5598.	1.9	78
100	Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign. Atmospheric Chemistry and Physics, 2015, 15, 8847-8869.	1.9	44
101	Shikimic acid ozonolysis kinetics of the transition from liquid aqueous solution to highly viscous glass. Physical Chemistry Chemical Physics, 2015, 17, 31101-31109.	1.3	41
102	Multiphase Chemical Kinetics of OH Radical Uptake by Molecular Organic Markers of Biomass Burning Aerosols: Humidity and Temperature Dependence, Surface Reaction, and Bulk Diffusion. Journal of Physical Chemistry A, 2015, 119, 4533-4544.	1.1	101
103	Multiphase Chemistry at the Atmosphere–Biosphere Interface Influencing Climate and Public Health in the Anthropocene. Chemical Reviews, 2015, 115, 4440-4475.	23.0	468
104	Radial Diffusion and Penetration of Gas Molecules and Aerosol Particles through Laminar Flow Reactors, Denuders, and Sampling Tubes. Analytical Chemistry, 2015, 87, 3746-3754.	3.2	36
105	Under What Conditions Can Equilibrium Gas–Particle Partitioning Be Expected to Hold in the Atmosphere?. Environmental Science & Technology, 2015, 49, 11485-11491.	4.6	46
106	Protein Cross-Linking and Oligomerization through Dityrosine Formation upon Exposure to Ozone. Environmental Science & Technology, 2015, 49, 10859-10866.	4.6	55
107	Molecular corridors and kinetic regimes in the multiphase chemical evolution of secondary organic aerosol. Atmospheric Chemistry and Physics, 2014, 14, 8323-8341.	1.9	87
108	Nitration of the Birch Pollen Allergen Bet v 1.0101: Efficiency and Site-Selectivity of Liquid and Gaseous Nitrating Agents. Journal of Proteome Research, 2014, 13, 1570-1577.	1.8	51

#	Article	IF	CITATIONS
109	Competition between water uptake and ice nucleation by glassy organic aerosol particles. Atmospheric Chemistry and Physics, 2014, 14, 12513-12531.	1.9	151
110	Secondary organic aerosol yields of 12-carbon alkanes. Atmospheric Chemistry and Physics, 2014, 14, 1423-1439.	1.9	100
111	Gas–particle partitioning of atmospheric aerosols: interplay of physical state, non-ideal mixing and morphology. Physical Chemistry Chemical Physics, 2013, 15, 11441.	1.3	222
112	Kinetic limitations in gas-particle reactions arising from slow diffusion in secondary organic aerosol. Faraday Discussions, 2013, 165, 391-406.	1.6	132
113	Mass Accommodation of Water: Bridging the Gap Between Molecular Dynamics Simulations and Kinetic Condensation Models. Journal of Physical Chemistry A, 2013, 117, 410-420.	1.1	81
114	Size-resolved measurement of the mixing state of soot in the megacity Beijing, China: Diurnal cycle, aging and parameterization. , 2013, , .		0
115	Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11746-11750.	3.3	147
116	Kinetic regimes and limiting cases of gas uptake and heterogeneous reactions in atmospheric aerosols and clouds: a general classification scheme. Atmospheric Chemistry and Physics, 2013, 13, 6663-6686.	1.9	77
117	Composition and hygroscopicity of the Los Angeles Aerosol: CalNex. Journal of Geophysical Research D: Atmospheres, 2013, 118, 3016-3036.	1.2	79
118	Size-resolved measurement of the mixing state of soot in the megacity Beijing, China: diurnal cycle, aging and parameterization. Atmospheric Chemistry and Physics, 2012, 12, 4477-4491.	1.9	81
119	Equilibration timescale of atmospheric secondary organic aerosol partitioning. Geophysical Research Letters, 2012, 39, .	1.5	202
120	Hazardous components and health effects of atmospheric aerosol particles: reactive oxygen species, soot, polycyclic aromatic compounds and allergenic proteins. Free Radical Research, 2012, 46, 927-939.	1.5	153
121	Multiphase Chemical Kinetics of the Nitration of Aerosolized Protein by Ozone and Nitrogen Dioxide. Environmental Science & Technology, 2012, 46, 6672-6680.	4.6	80
122	Multiphase Chemical Kinetics of NO ₃ Radicals Reacting with Organic Aerosol Components from Biomass Burning. Environmental Science & Technology, 2012, 46, 6630-6636.	4.6	55
123	Biogenic Potassium Salt Particles as Seeds for Secondary Organic Aerosol in the Amazon. Science, 2012, 337, 1075-1078.	6.0	188
124	Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP): linking condensation, evaporation and chemical reactions of organics, oxidants and water. Atmospheric Chemistry and Physics, 2012, 12, 2777-2794.	1.9	170
125	General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales. Atmospheric Chemistry and Physics, 2011, 11, 13061-13143.	1.9	278
126	Chemical ageing and transformation of diffusivity in semi-solid multi-component organic aerosol particles. Atmospheric Chemistry and Physics, 2011, 11, 7343-7354.	1.9	98

#	Article	IF	CITATIONS
127	The role of long-lived reactive oxygen intermediates in the reaction of ozone with aerosol particles. Nature Chemistry, 2011, 3, 291-295.	6.6	172
128	Glass transition and phase state of organic compounds: dependency on molecular properties and implications for secondary organic aerosols in the atmosphere. Physical Chemistry Chemical Physics, 2011, 13, 19238.	1.3	585
129	Gas uptake and chemical aging of semisolid organic aerosol particles. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11003-11008.	3.3	555
130	Kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB): the influence of interfacial transport and bulk diffusion on the oxidation of oleic acid by ozone. Atmospheric Chemistry and Physics, 2010, 10, 3673-3691.	1.9	178
131	Coupling aerosol surface and bulk chemistry with a kinetic double layer model (K2-SUB): oxidation of oleic acid by ozone. Atmospheric Chemistry and Physics, 2010, 10, 4537-4557.	1.9	43
132	Amplification of Light Absorption of Black Carbon by Organic Coating. Aerosol Science and Technology, 2010, 44, 46-54.	1.5	192
133	Formation and Transport of Aerosols in Tokyo in Relation to Their Physical and Chemical Properties: A Review. Journal of the Meteorological Society of Japan, 2010, 88, 597-624.	0.7	24
134	Preparation of Atomically Flat TiO ₂ (110) Substrate. Japanese Journal of Applied Physics, 2009, 48, 125506.	0.8	6
135	Chemical characterization of waterâ€soluble organic carbon aerosols at a rural site in the Pearl River Delta, China, in the summer of 2006. Journal of Geophysical Research, 2009, 114, .	3.3	69
136	Kinetic double-layer model of aerosol surface chemistry and gas-particle interactions (K2-SURF): Degradation of polycyclic aromatic hydrocarbons exposed to O ₃ , NO ₂ , H ₂ O, OH and NO ₃ .	1.9	99
137	Radiative impact of mixing state of black carbon aerosol in Asian outflow. Journal of Geophysical Research, 2008, 113, .	3.3	120
138	Evolution of mixing state of black carbon in polluted air from Tokyo. Geophysical Research Letters, 2007, 34, .	1.5	149
139	Multiphase Kinetic Multilayer Model Interfaces for Simulating Surface and Bulk Chemistry for Environmental and Atmospheric Chemistry Teaching. Journal of Chemical Education, 0, , .	1.1	6
140	Heterogeneous Interactions between Carvone and Hydroxylated SiO ₂ . Journal of Physical Chemistry C, 0, , .	1.5	6