
I-Wen Peter Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8393375/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Covalently Interconnected Polymer Dot–WS ₂ Nanosheet Heterostructure for Visible Light-Driven Hydrogen Production. ACS Applied Nano Materials, 2022, 5, 2163-2174.	2.4	7
2	Layer-by-Layer Exfoliation of Transition-Metal Dichalcogenides by Amino Acid in Water for Promoting Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2022, 126, 6207-6214.	1.5	1
3	Active Edge Site Exposed βâ€Ni(OH) 2 Nanosheets on Stainless Steel Mesh as a Versatile Electrocatalyst for the Oxidation of Urea, Hydrazine, and Water. ChemCatChem, 2021, 13, 1165-1174.	1.8	13
4	Exfoliation of 2D materials by saponin in water: Aerogel adsorption / photodegradation organic dye. Chemosphere, 2021, 274, 129795.	4.2	15
5	Coupling of Thermal and Electrochemical-Activated Stainless-Steel Mesh as a Highly Robust Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 10404-10413.	2.5	10
6	One-Pot Synthesis of Chlorophyll-Assisted Exfoliated MoS2/WS2 Heterostructures via Liquid-Phase Exfoliation Method for Photocatalytic Hydrogen Production. Nanomaterials, 2021, 11, 2436.	1.9	8
7	<i>In situ</i> recycling of particulate matter for a high-performance supercapacitor and oxygen evolution reaction. Materials Chemistry Frontiers, 2021, 5, 2742-2748.	3.2	1
8	Tuning surface d bands with bimetallic electrodes to facilitate electron transport across molecular junctions. Nature Materials, 2021, 20, 658-664.	13.3	47
9	Tuning the surface charge density of exfoliated thin molybdenum disulfide sheets <i>via</i> non-covalent functionalization for promoting hydrogen evolution reaction. Journal of Materials Chemistry C, 2020, 8, 510-517.	2.7	17
10	Binder-Free Heterostructured NiFe ₂ O ₄ /NiFe LDH Nanosheet Composite Electrocatalysts for Oxygen Evolution Reactions. ACS Applied Energy Materials, 2020, 3, 10831-10840.	2.5	51
11	Synthesis of high-quality monolayer tungsten disulfide with chlorophylls and its application for enhancing bone regeneration. Npj 2D Materials and Applications, 2020, 4, .	3.9	17
12	Importance of Cobalt-Doping for the Preparation of Hollow CuBr/Co@CuO Nanocorals on Copper Foils with Enhanced Electrocatalytic Activity and Stability for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 9794-9802.	3.2	13
13	The synergistic effects of graphene-contained 3D-printed calcium silicate/poly-ε-caprolactone scaffolds promote FGFR-induced osteogenic/angiogenic differentiation of mesenchymal stem cells. Materials Science and Engineering C, 2019, 104, 109887.	3.8	56
14	Integration of Ultrathin MoS ₂ /PANI/CNT Composite Paper in Producing All-Solid-State Flexible Supercapacitors with Exceptional Volumetric Energy Density. Journal of Physical Chemistry C, 2019, 123, 17864-17872.	1.5	51
15	Highly Efficient Hydrogen Evolution from Seawater by Biofunctionalized Exfoliated MoS ₂ Quantum Dot Aerogel Electrocatalysts That Is Superior to Pt. ACS Applied Materials & Interfaces, 2019, 11, 14159-14165.	4.0	43
16	Scalable synthesis of two-dimensional nano-sheet materials with chlorophyll extracts: enhancing the hydrogen evolution reaction. Green Chemistry, 2018, 20, 525-533.	4.6	15
17	Newton Output Blocking Force under Low-Voltage Stimulation for Carbon Nanotube–Electroactive Polymer Composite Artificial Muscles. ACS Applied Materials & Interfaces, 2017, 9, 5550-5555.	4.0	33
18	Synergistic acceleration in the osteogenic and angiogenic differentiation of human mesenchymal stem cells by calcium silicate–graphene composites. Materials Science and Engineering C, 2017, 73, 726-735.	3.8	71

I-WEN PETER CHEN

#	Article	IF	CITATIONS
19	Large-scale fabrication of a flexible, highly conductive composite paper based on molybdenum disulfide–Pt nanoparticle–single-walled carbon nanotubes for efficient hydrogen production. Chemical Communications, 2017, 53, 380-383.	2.2	11
20	Large-Scale Production of Large-Size Atomically Thin Semiconducting Molybdenum Dichalcogenide Sheets in Water and Its Application for Supercapacitor. Scientific Reports, 2016, 6, 26660.	1.6	18
21	Scalable and high-yield production of exfoliated graphene sheets in water and its application to an all-solid-state supercapacitor. Carbon, 2015, 90, 16-24.	5.4	60
22	One pot synthesis of graphene quantum disks derived from single-layered exfoliated graphene sheets and their application in bioimaging. RSC Advances, 2014, 4, 25916.	1.7	7
23	Exfoliation and Performance Properties of Non-Oxidized Graphene in Water. Scientific Reports, 2014, 4, 3928.	1.6	26
24	Preparation of high-quality graphene sheets and their applications in highly conductive papers and a high-performance electromechanical actuator. Journal of Materials Chemistry C, 2013, 1, 5970.	2.7	19
25	Noncovalently functionalized highly conducting carbon nanotube films with enhanced doping stability via an amide linkage. Chemical Communications, 2013, 49, 2753.	2.2	22
26	Tactileâ€Feedback Stabilized Molecular Junctions for the Measurement of Molecular Conductance. Angewandte Chemie - International Edition, 2013, 52, 2449-2453.	7.2	20
27	Improved performance of carbon nanotube buckypaper and ionic-liquid-in-Nafion actuators for rapid response and high durability in the open air. Sensors and Actuators B: Chemical, 2012, 171-172, 515-521.	4.0	26
28	Highly conductive carbon nanotube buckypapers with improved doping stability via conjugational cross-linking. Nanotechnology, 2011, 22, 485708.	1.3	60
29	Charge-induced asymmetrical displacement of an aligned carbon nanotube buckypaper actuator. Carbon, 2010, 48, 1064-1069.	5.4	61
30	On the Nanoaggregated Emitter of All sp ² -Hybridized Bistriphenylenyl in the Device Layout of Organic Light-Emitting Diodes. Journal of Physical Chemistry C, 2008, 112, 3097-3102.	1.5	6
31	The effect of molecular conformation on single molecule conductance: measurements of ï€-conjugated oligoaryls by STM break junction. Chemical Communications, 2007, , 3074-3076.	2.2	23
32	Conductance of Alkanediisothiocyanates:  Effect of Headgroupâ^'Electrode Contacts. Journal of Physical Chemistry C, 2007, 111, 11450-11455.	1.5	33
33	A New Generation of Metal String Complexes: Structure, Magnetism, Spectroscopy, Theoretical Analysis, and Single Molecular Conductance of an Unusual Mixedâ€Valence Linear [Ni ₅] ⁸⁺ Complex. Chemistry - A European Journal, 2007, 13, 8667-8677.	1.7	79
34	Conductance and Stochastic Switching of Ligand-Supported Linear Chains of Metal Atoms. Angewandte Chemie - International Edition, 2006, 45, 5814-5818.	7.2	180
35	Conductance and Stochastic Switching of Ligand-Supported Linear Chains of Metal Atoms. Angewandte Chemie - International Edition, 2006, 45, 6244-6244.	7.2	5
36	Monolayers of Diphenyldiacetylene Derivatives:Â Tuning Molecular Tilt Angles and Photopolymerization Efficiency via Electrodeposited Ag Interlayer on Au. Journal of Physical Chemistry B, 2005, 109, 19161-19168.	1.2	33

#	Article	IF	CITATIONS
37	Monolayer Structures of Highly Photoluminescent Furan Oligoaryls:Â An Approach to Improve Packing Crystallinity of Dithiolated Aromatics. Journal of Physical Chemistry B, 2005, 109, 7915-7922.	1.2	8
38	Effect of Underpotentially Deposited Adlayers on Sulfur Bonding Schemes of Organothiols Self-Assembled on Polycrystalline Gold:  sp or sp3 Hybridization. Journal of Physical Chemistry B, 2004, 108, 17497-17504.	1.2	26
39	Effect of Metalâ^'Metal Interactions on Electron Transfer:  an STM Study of One-Dimensional Metal String Complexes. Journal of Physical Chemistry B, 2004, 108, 959-964.	1.2	128