
Pedro Bule

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8393297/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemokine-Directed Tumor Microenvironment Modulation in Cancer Immunotherapy. International Journal of Molecular Sciences, 2021, 22, 9804.	4.1	73
2	Complexity of the <i>Ruminococcus flavefaciens</i> cellulosome reflects an expansion in glycan recognition. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7136-7141.	7.1	58
3	Complexity of the Ruminococcus flavefaciens FD-1 cellulosome reflects an expansion of family-related protein-protein interactions. Scientific Reports, 2017, 7, 42355.	3.3	31
4	Low doses of exogenous xylanase improve the nutritive value of triticale-based diets for broilers. Journal of Applied Poultry Research, 2013, 22, 92-99.	1.2	29
5	Cellulosome assembly: paradigms are meant to be broken!. Current Opinion in Structural Biology, 2018, 49, 154-161.	5.7	27
6	From Cancer Therapy to Winemaking: The Molecular Structure and Applications of β-Glucans and β-1, 3-Glucanases. International Journal of Molecular Sciences, 2022, 23, 3156.	4.1	23
7	Cell-surface Attachment of Bacterial Multienzyme Complexes Involves Highly Dynamic Protein-Protein Anchors. Journal of Biological Chemistry, 2015, 290, 13578-13590.	3.4	22
8	Diverse specificity of cellulosome attachment to the bacterial cell surface. Scientific Reports, 2016, 6, 38292.	3.3	20
9	Assembly of Ruminococcus flavefaciens cellulosome revealed by structures of two cohesin-dockerin complexes. Scientific Reports, 2017, 7, 759.	3.3	20
10	Single Binding Mode Integration of Hemicellulose-degrading Enzymes via Adaptor Scaffoldins in Ruminococcus flavefaciens Cellulosome. Journal of Biological Chemistry, 2016, 291, 26658-26669.	3.4	19
11	Stability and Ligand Promiscuity of Type A Carbohydrate-binding Modules Are Illustrated by the Structure of Spirochaeta thermophila StCBM64C. Journal of Biological Chemistry, 2017, 292, 4847-4860.	3.4	19
12	Inverting family GH156 sialidases define an unusual catalytic motif for glycosidase action. Nature Communications, 2019, 10, 4816.	12.8	13
13	Structure–function analyses generate novel specificities to assemble the components of multienzyme bacterial cellulosome complexes. Journal of Biological Chemistry, 2018, 293, 4201-4212.	3.4	12
14	Recalcitrant cell wall of Ulva lactuca seaweed is degraded by a single ulvan lyase from family 25 of polysaccharide lyases. Animal Nutrition, 2022, 9, 184-192.	5.1	12
15	Target highlights from the first postâ€PSI CASP experiment (CASP12, May–August 2016). Proteins: Structure, Function and Bioinformatics, 2018, 86, 27-50.	2.6	11
16	Cellulosomes: Highly Efficient Cellulolytic Complexes. Sub-Cellular Biochemistry, 2021, 96, 323-354.	2.4	11
17	Combined Crystal Structure of a Type I Cohesin. Journal of Biological Chemistry, 2015, 290, 16215-16225.	3.4	10
18	The family 6 Carbohydrate Binding Module (CtCBM6) of glucuronoxylanase (CtXynGH30) of Clostridium thermocellum binds decorated and undecorated xylans through cleft A. Archives of Biochemistry and Biophysics, 2015, 575, 8-21.	3.0	10

Pedro Bule

#	Article	IF	CITATIONS
19	Molecular Cloning, Expression and Biochemical Characterization of a Family 5 Glycoside Hydrolase First Endo-Mannanase (RfGH5_7) from Ruminococcus flavefaciens FD-1 v3. Molecular Biotechnology, 2019, 61, 826-835.	2.4	10
20	Molecular determinants of substrate specificity revealed by the structure of <i>Clostridium thermocellum</i> arabinofuranosidase 43A from glycosyl hydrolase family 43 subfamily 16. Acta Crystallographica Section D: Structural Biology, 2016, 72, 1281-1289.	2.3	9
21	Conservation in the mechanism of glucuronoxylan hydrolysis revealed by the structure of glucuronoxylan xylanohydrolase (<i>Ct</i> Xyn30A) from <i>Clostridium thermocellum</i> . Acta Crystallographica Section D: Structural Biology, 2016, 72, 1162-1173.	2.3	9
22	Molecular basis for the preferential recognition of β1,3â€1,4â€glucans by the family 11 carbohydrateâ€binding module from <i>ClostridiumÂthermocellum</i> . FEBS Journal, 2020, 287, 2723-2743.	4.7	9
23	A dual cohesin–dockerin complex binding mode in Bacteroides cellulosolvens contributes to the size and complexity of its cellulosome. Journal of Biological Chemistry, 2021, 296, 100552.	3.4	8
24	Higher order scaffoldin assembly in Ruminococcus flavefaciens cellulosome is coordinated by a discrete cohesin-dockerin interaction. Scientific Reports, 2018, 8, 6987.	3.3	6
25	Overexpression, crystallization and preliminary X-ray crystallographic analysis of glucuronoxylan xylanohydrolase (Xyn30A) from <i>Clostridium thermocellum</i> . Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 1440-1442.	0.7	4
26	Overexpression, purification, crystallization and preliminary X-ray characterization of the fourth scaffoldin A cohesin fromAcetivibrio cellulolyticusin complex with a dockerin from a family 5 glycoside hydrolase. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1065-1067.	0.8	4
27	Purification, crystallization and preliminary X-ray characterization of theAcetivibrio cellulolyticustype I cohesin ScaC in complex with the ScaB dockerin. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1030-1033.	0.7	3
28	Overexpression, crystallization and preliminary X-ray characterization ofRuminococcus flavefaciensscaffoldin C cohesin in complex with a dockerin from an uncharacterized CBM-containing protein. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1061-1064.	0.8	2
29	Expression, purification, crystallization and preliminary X-ray analysis of CttA, a putative cellulose-binding protein from <i>Ruminococcus flavefaciens</i> . Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 784-789.	0.8	2
30	Purification, crystallization and preliminary X-ray characterization of the third ScaB cohesin in complex with an ScaA X-dockerin fromAcetivibrio cellulolyticus. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 656-658.	0.8	1
31	Purification and crystallographic studies of a putative carbohydrate-binding module from theRuminococcus flavefaciensFD-1 endoglucanase Cel5A. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 958-961.	0.8	0
32	Elucidation of the ScaC cohesin to ScaB dockerin type I protein:protein interactions inAcetivibrio cellulolyticus. Acta Crystallographica Section A: Foundations and Advances, 2013, 69, s360-s361.	0.3	0
33	The Fine Structure of the Cellulosome Defines the Intricacies of Carbohydrate Deconstruction in the Mammalian Gut. , 2020, , 87-107.		0