
Beth A Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8393096/publications.pdf Version: 2024-02-01

RETH A SMITH

#	Article	IF	CITATIONS
1	Uncontrolled manifold analysis of segmental angle variability during walking: preadolescents with and without Down syndrome. Experimental Brain Research, 2007, 183, 511-521.	0.7	100
2	Systematic Review and Evidence-Based Clinical Recommendations for Dosing of Pediatric Supported Standing Programs. Pediatric Physical Therapy, 2013, 25, 232-247.	0.3	92
3	Physical Therapists Make Accurate and Appropriate Discharge Recommendations for Patients Who Are Acutely III. Physical Therapy, 2010, 90, 693-703.	1.1	89
4	Wearables for Pediatric Rehabilitation: How to Optimally Design and Use Products to Meet the Needs of Users. Physical Therapy, 2019, 99, 647-657.	1.1	62
5	Effects of treadmill exercise on behavioral recovery and neural changes in the substantia nigra and striatum of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse. Brain Research, 2011, 1386, 70-80.	1.1	61
6	Early onset of stabilizing strategies for gait and obstacles: Older adults with Down syndrome. Gait and Posture, 2008, 28, 448-455.	0.6	60
7	Effect of Practice on a Novel Task—Walking on a Treadmill: Preadolescents With and Without Down Syndrome. Physical Therapy, 2007, 87, 766-777.	1.1	57
8	Daily Quantity of Infant Leg Movement: Wearable Sensor Algorithm and Relationship to Walking Onset. Sensors, 2015, 15, 19006-19020.	2.1	53
9	Stepping Responses of Infants With Myelomeningocele When Supported on a Motorized Treadmill. Physical Therapy, 2009, 89, 60-72.	1.1	45
10	Electroencephalography power and coherence changes with age and motor skill development across the first half year of life. PLoS ONE, 2018, 13, e0190276.	1.1	42
11	Changes in social support of pregnant and postnatal mothers during the COVID-19 pandemic. Midwifery, 2021, 103, 103162.	1.0	40
12	Effects of magnitude and magnitude predictability of postural perturbations on preparatory cortical activity in older adults with and without Parkinson's disease. Experimental Brain Research, 2012, 222, 455-470.	0.7	38
13	Development of a Wearable Sensor Algorithm to Detect the Quantity and Kinematic Characteristics of Infant Arm Movement Bouts Produced across a Full Day in the Natural Environment. Technologies, 2017, 5, 39.	3.0	35
14	Using Wearable Sensor Technology to Measure Motion Complexity in Infants at High Familial Risk for Autism Spectrum Disorder. Sensors, 2021, 21, 616.	2.1	29
15	Identification of Developmental Delay in Infants Using Wearable Sensors: Full-Day Leg Movement Statistical Feature Analysis. IEEE Journal of Translational Engineering in Health and Medicine, 2019, 7, 1-7.	2.2	27
16	Patterns of Gait Variability Across the Lifespan in Persons With and Without Down Syndrome. Journal of Neurologic Physical Therapy, 2011, 35, 170-177.	0.7	25
17	Sensor Measures of Symmetry Quantify Upper Limb Movement in the Natural Environment Across the Lifespan. Archives of Physical Medicine and Rehabilitation, 2019, 100, 1176-1183.	0.5	25
18	Impact of Enhanced Sensory Input on Treadmill Step Frequency. Pediatric Physical Therapy, 2011, 23, 42-52.	0.3	24

ВЕТН А ЅМІТН

#	Article	lF	CITATIONS
19	Approximate Entropy Values Demonstrate Impaired Neuromotor Control of Spontaneous Leg Activity in Infants With Myelomeningocele. Pediatric Physical Therapy, 2011, 23, 241-247.	0.3	24
20	Sample Entropy Identifies Differences in Spontaneous Leg Movement Behavior between Infants with Typical Development and Infants at Risk of Developmental Delay. Technologies, 2017, 5, 55.	3.0	23
21	Kinematic characteristics of infant leg movements produced across a full day. Journal of Rehabilitation and Assistive Technologies Engineering, 2017, 4, 205566831771746.	0.6	22
22	The interaction of postural and voluntary strategies for stability in Parkinson's disease. Journal of Neurophysiology, 2012, 108, 1244-1252.	0.9	20
23	Effects of Amplitude Cueing on Postural Responses and Preparatory Cortical Activity of People With Parkinson Disease. Journal of Neurologic Physical Therapy, 2014, 38, 207-215.	0.7	20
24	Gait adaptations in response to perturbations in adults with Down syndrome. Gait and Posture, 2010, 32, 149-154.	0.6	19
25	Socially Assistive Infant-Robot Interaction: Using Robots to Encourage Infant Leg-Motion Training. IEEE Robotics and Automation Magazine, 2019, 26, 12-23.	2.2	19
26	Lyapunov Exponent and Surrogation Analysis of Patterns of Variability: Profiles in New Walkers With and Without Down Syndrome. Motor Control, 2010, 14, 126-142.	0.3	18
27	Determining if wearable sensors affect infant leg movement frequency. Developmental Neurorehabilitation, 2018, 21, 133-136.	0.5	14
28	Quantitative Gait Analysis in Duplication <scp>15q</scp> Syndrome and Nonsyndromic <scp>ASD</scp> . Autism Research, 2020, 13, 1102-1110.	2.1	11
29	Consistency in Administration and Response for the Backward Push and Release Test: A Clinical Assessment of Postural Responses. Physiotherapy Research International, 2016, 21, 36-46.	0.7	10
30	Quantifying Caregiver Movement when Measuring Infant Movement across a Full Day: A Case Report. Sensors, 2019, 19, 2886.	2.1	10
31	Immediate Effect of Positioning Devices on Infant Leg Movement Characteristics. Pediatric Physical Therapy, 2016, 28, 304-310.	0.3	9
32	How Many Days Are Necessary to Represent an Infant's Typical Daily Leg Movement Behavior Using Wearable Sensors?. Physical Therapy, 2019, 99, 730-738.	1.1	9
33	Relationships between full-day arm movement characteristics and developmental status in infants with typical development as they learn to reach: An observational study. Gates Open Research, 2018, 2, 17.	2.0	9
34	Keeping your balance while balancing a cylinder: interaction between postural and voluntary goals. Experimental Brain Research, 2012, 223, 79-87.	0.7	8
35	Relationships between full-day arm movement characteristics and developmental status in infants with typical development as they learn to reach: An observational study. Gates Open Research, 2018, 2, 17.	2.0	8
36	Early Detection of Cognitive, Language, and Motor Delays for Low-Income Preterm Infants: A Brazilian Cohort Longitudinal Study on Infant Neurodevelopment and Maternal Practice. Frontiers in Psychology, 2021, 12, 753551.	1.1	8

ВЕТН А ЅМІТН

#	Article	IF	CITATIONS
37	Gait Parameter Adjustments for Walking on a Treadmill at Preferred, Slower, and Faster Speeds in Older Adults with Down Syndrome. Current Gerontology and Geriatrics Research, 2012, 2012, 1-7.	1.6	6
38	Differences in Spontaneous Leg Movement Patterns Between Infants With Typical Development and Infants at Risk for Developmental Delay: Cross-sectional Observation Prior to Sitting Onset. Journal of Motor Learning and Development, 2018, 6, 101-113.	0.2	6
39	Muscle Activation Patterns in Infants With Myelomeningocele Stepping on a Treadmill. Pediatric Physical Therapy, 2013, 25, 278-289.	0.3	5
40	Electroencephalography measures of relative power and coherence as reaching skill emerges in infants born preterm. Scientific Reports, 2021, 11, 3609.	1.6	5
41	Vibration-Induced Motor Responses of Infants With and Without Myelomeningocele. Physical Therapy, 2012, 92, 537-550.	1.1	4
42	Relationships between variance in electroencephalography relative power and developmental status in infants with typical development and at risk for developmental disability: An observational study. Gates Open Research, 2018, 2, 47.	2.0	4
43	Surprise! Predicting Infant Visual Attention in a Socially Assistive Robot Contingent Learning Paradigm. , 2019, , .		3
44	How Many Days are Necessary to Represent Typical Daily Leg Movement Behavior for Infants at Risk of Developmental Disabilities?. Sensors, 2020, 20, 5344.	2.1	3
45	Toward Predicting Infant Developmental Outcomes From Day-Long Inertial Motion Recordings. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 2305-2314.	2.7	3
46	Infant Reaching in the First Year of Life: A Scoping Review of Typical Development and Examples of Atypical Development. Physical and Occupational Therapy in Pediatrics, 2022, 42, 80-98.	0.8	3
47	Using a Treadmill Intervention to Promote the Onset of Independent Walking in Infants With or at Risk for Neuromotor Delay. Physical Therapy, 2013, 93, 1441-1446.	1.1	2
48	Long-range temporal organisation of limb movement kinematics in human neonates. Clinical Neurophysiology Practice, 2020, 5, 194-198.	0.6	2
49	Collecting Infant Environmental and Experiential Data Using Smartphone Surveys. Pediatric Physical Therapy, 2021, 33, 47-49.	0.3	2
50	Using Socially Assistive Robot Feedback to Reinforce Infant Leg Movement Acceleration. , 2021, , .		2
51	The Otteroo: A Case Series Exploring Its Potential to Support Physical Therapy Intervention in Infants with or at Risk for Developmental Delay. Healthcare (Switzerland), 2021, 9, 109.	1.0	2
52	Commentary on "Measuring Postural Stability in Young Children With Cerebral Palsy. Pediatric Physical Therapy, 2014, 26, 338.	0.3	1
53	Adaptation of the Difficulty Level in an Infant-Robot Movement Contingency Study. Advances in Intelligent Systems and Computing, 2019, , 70-83.	0.5	1
54	Beyond the neonatal intensive care unit: the impact of preterm birth. Developmental Medicine and Child Neurology, 2020, 62, 1117-1118.	1.1	0

ВЕТН А ЅМІТН

#	Article	IF	CITATIONS
55	Leg Movement Rate Pre- and Post-Kicking Intervention in Infants with Down Syndrome. Physical and Occupational Therapy in Pediatrics, 2021, 41, 590-600.	0.8	0
56	Leg Movement Rate before and after a Caregiver-Provided Intervention for Infants at Risk of Developmental Disability: A Pilot Study. Physical and Occupational Therapy in Pediatrics, 2022, 42, 259-274.	0.8	0
57	Relationships between variance in electroencephalography relative power and developmental status in infants with typical development and at risk for developmental disability: An observational study. Gates Open Research, 0, 2, 47.	2.0	0
58	Infant Leg Activity Intensity Before and After Naps. Journal for the Measurement of Physical Behaviour, 2020, 3, 157-163.	0.5	0
59	Outcomes and Hand Use of Reaching Attempts: Comparison of Infants at Risk for Developmental Disability and Infants With Typical Development. Frontiers in Psychology, 2022, 13, .	1.1	0