Antoine Adamantidis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8393083/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature, 2007, 450, 420-424.	13.7	1,157
2	Phasic Firing in Dopaminergic Neurons Is Sufficient for Behavioral Conditioning. Science, 2009, 324, 1080-1084.	6.0	1,064
3	Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nature Protocols, 2010, 5, 439-456.	5.5	895
4	Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nature Neuroscience, 2010, 13, 1526-1533.	7.1	800
5	Circuit-breakers: optical technologies for probing neural signals and systems. Nature Reviews Neuroscience, 2007, 8, 577-581.	4.9	586
6	Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science, 2016, 352, 812-816.	6.0	490
7	Narcolepsy — clinical spectrum, aetiopathophysiology, diagnosis and treatment. Nature Reviews Neurology, 2019, 15, 519-539.	4.9	364
8	Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nature Neuroscience, 2013, 16, 1637-1643.	7.1	359
9	Optogenetic Interrogation of Dopaminergic Modulation of the Multiple Phases of Reward-Seeking Behavior. Journal of Neuroscience, 2011, 31, 10829-10835.	1.7	322
10	Sleep Homeostasis Modulates Hypocretin-Mediated Sleep-to-Wake Transitions. Journal of Neuroscience, 2009, 29, 10939-10949.	1.7	232
11	Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nature Neuroscience, 2016, 19, 290-298.	7.1	228
12	Parvalbumin Interneurons of Hippocampus Tune Population Activity at Theta Frequency. Neuron, 2015, 86, 1277-1289.	3.8	203
13	Optogenetic disruption of sleep continuity impairs memory consolidation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13305-13310.	3.3	172
14	Coreleased Orexin and Glutamate Evoke Nonredundant Spike Outputs and Computations in Histamine Neurons. Cell Reports, 2014, 7, 697-704.	2.9	160
15	Thalamic dual control of sleep and wakefulness. Nature Neuroscience, 2018, 21, 974-984.	7.1	159
16	Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks. Nature Communications, 2016, 7, 11395.	5.8	152
17	Oscillating circuitries in the sleeping brain. Nature Reviews Neuroscience, 2019, 20, 746-762.	4.9	144
18	Activation of Central Orexin/Hypocretin Neurons by Dietary Amino Acids. Neuron, 2011, 72, 616-629.	3.8	134

#	Article	IF	CITATIONS
19	Optogenetic Probing of Fast Glutamatergic Transmission from Hypocretin/Orexin to Histamine Neurons <i>In Situ</i> . Journal of Neuroscience, 2012, 32, 12437-12443.	1.7	131
20	Optogenetics: 10 years after ChR2 in neurons—views from the community. Nature Neuroscience, 2015, 18, 1202-1212.	7.1	122
21	The role of sleep in recovery following ischemic stroke: A review of human and animal data. Neurobiology of Sleep and Circadian Rhythms, 2017, 2, 94-105.	1.4	114
22	Optogenetic Evidence for Inhibitory Signaling from Orexin to MCH Neurons via Local Microcircuits. Journal of Neuroscience, 2015, 35, 5435-5441.	1.7	113
23	Sleep-wake control and the thalamus. Current Opinion in Neurobiology, 2018, 52, 188-197.	2.0	104
24	Sleep and metabolism: shared circuits, new connections. Trends in Endocrinology and Metabolism, 2008, 19, 362-370.	3.1	97
25	REM sleep and memory. Current Opinion in Neurobiology, 2017, 44, 167-177.	2.0	94
26	The hypocretins as sensors for metabolism and arousal. Journal of Physiology, 2009, 587, 33-40.	1.3	92
27	Disrupting the melanin-concentrating hormone receptor $\hat{a} \in f1$ in mice leads to cognitive deficits and alterations of NMDA receptor function. European Journal of Neuroscience, 2005, 21, 2837-2844.	1.2	87
28	Shining Light on Wakefulness and Arousal. Biological Psychiatry, 2012, 71, 1046-1052.	0.7	85
29	Sleep architecture of the melaninâ€concentrating hormone receptor 1â€knockout mice. European Journal of Neuroscience, 2008, 27, 1793-1800.	1.2	78
30	Norepinephrine Drives Persistent Activity in Prefrontal Cortex via Synergistic α1 and α2 Adrenoceptors. PLoS ONE, 2013, 8, e66122.	1.1	75
31	Melanin-concentrating hormone regulates beat frequency of ependymal cilia and ventricular volume. Nature Neuroscience, 2013, 16, 845-847.	7.1	70
32	A Temperature-sensitive Mutation in the Arabidopsis thaliana Phosphomannomutase Gene Disrupts Protein Glycosylation and Triggers Cell Death. Journal of Biological Chemistry, 2008, 283, 5708-5718.	1.6	60
33	Rapid fast-delta decay following prolonged wakefulness marks a phase of wake-inertia in NREM sleep. Nature Communications, 2020, 11, 3130.	5.8	59
34	Circadian VIPergic Neurons of the Suprachiasmatic Nuclei Sculpt the Sleep-Wake Cycle. Neuron, 2020, 108, 486-499.e5.	3.8	55
35	Functional wiring of hypocretin and LC-NE neurons: implications for arousal. Frontiers in Behavioral Neuroscience, 2013, 7, 43.	1.0	53
36	A role for Melanin-Concentrating Hormone in learning and memory. Peptides, 2009, 30, 2066-2070.	1.2	51

#	Article	IF	CITATIONS
37	SPINDLE: End-to-end learning from EEG/EMG to extrapolate animal sleep scoring across experimental settings, labs and species. PLoS Computational Biology, 2019, 15, e1006968.	1.5	51
38	Role of spontaneous and sensory orexin network dynamics in rapid locomotion initiation. Progress in Neurobiology, 2020, 187, 101771.	2.8	51
39	A genetically encoded sensor for in vivo imaging of orexin neuropeptides. Nature Methods, 2022, 19, 231-241.	9.0	50
40	Optogenetic deconstruction of sleep-wake circuitry in the brain. Frontiers in Molecular Neuroscience, 2010, 2, 31.	1.4	47
41	A role for spindles in the onset of rapid eye movement sleep. Nature Communications, 2020, 11, 5247.	5.8	45
42	Sleep & metabolism: The multitasking ability of lateral hypothalamic inhibitory circuitries. Frontiers in Neuroendocrinology, 2017, 44, 27-34.	2.5	44
43	Melanin-concentrating hormone and sleep. Current Opinion in Neurobiology, 2017, 44, 152-158.	2.0	43
44	Dynamic REM Sleep Modulation by Ambient Temperature and the Critical Role of the Melanin-Concentrating Hormone System. Current Biology, 2019, 29, 1976-1987.e4.	1.8	43
45	Paradoxical somatodendritic decoupling supports cortical plasticity during REM sleep. Science, 2022, 376, 724-730.	6.0	42
46	Human immune cells express ppMCH mRNA and functional MCHR1 receptor. FEBS Letters, 2002, 527, 205-210.	1.3	41
47	Sleep-Wake Cycle Dysfunction in the TgCRND8 Mouse Model of Alzheimer's Disease: From Early to Advanced Pathological Stages. PLoS ONE, 2015, 10, e0130177.	1.1	40
48	Dynamic modulation of thetaâ \in "gamma coupling during rapid eye movement sleep. Sleep, 2019, 42, .	0.6	39
49	Transgenic engineering of male-specific muscular hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6413-6418.	3.3	38
50	Monoaminergic control of brain states and sensory processing: Existing knowledge and recent insights obtained with optogenetics. Progress in Neurobiology, 2017, 151, 237-253.	2.8	38
51	Major Impairments of Glutamatergic Transmission and Long-Term Synaptic Plasticity in the Hippocampus of Mice Lacking the Melanin-Concentrating Hormone Receptor-1. Journal of Neurophysiology, 2010, 104, 1417-1425.	0.9	35
52	Discharge and Role of Acetylcholine Pontomesencephalic Neurons in Cortical Activity and Sleep-Wake States Examined by Optogenetics and Juxtacellular Recording in Mice. ENeuro, 2018, 5, ENEURO.0270-18.2018.	0.9	35
53	The role of melanin oncentrating hormone in conditioned reward learning. European Journal of Neuroscience, 2012, 36, 3126-3133.	1.2	31
54	Slow Waves Promote Sleep-Dependent Plasticity and Functional Recovery after Stroke. Journal of Neuroscience, 2020, 40, 8637-8651.	1.7	31

#	Article	IF	CITATIONS
55	Deletion of Melanin Concentrating Hormone Receptor-1 disrupts overeating in the presence of food cues. Physiology and Behavior, 2015, 152, 402-407.	1.0	30
56	Electronic Sleep Stage Classifiers: A Survey and VLSI Design Methodology. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 177-188.	2.7	30
57	Mice lacking the melanin-concentrating hormone receptor-1 exhibit an atypical psychomotor susceptibility to cocaine and no conditioned cocaine response. Behavioural Brain Research, 2006, 173, 94-103.	1.2	28
58	Optogenetics: Opsins and Optical Interfaces in Neuroscience. Cold Spring Harbor Protocols, 2014, 2014, pdb.top083329.	0.2	28
59	A circuit perspective on narcolepsy. Sleep, 2020, 43, .	0.6	27
60	Control of Ventricular Ciliary Beating by the Melanin Concentrating Hormone-Expressing Neurons of the Lateral Hypothalamus: A Functional Imaging Survey. Frontiers in Endocrinology, 2013, 4, 182.	1.5	24
61	Sleep-Wake Cycling and Energy Conservation: Role of Hypocretin and the Lateral Hypothalamus in Dynamic State-Dependent Resource Optimization. Frontiers in Neurology, 2018, 9, 790.	1.1	24
62	Ciliary melaninâ€concentrating hormone receptor 1 (MCHR1) is widely distributed in the murine CNS in a sexâ€independent manner. Journal of Neuroscience Research, 2020, 98, 2045-2071.	1.3	23
63	Role of REM Sleep, Melanin Concentrating Hormone and Orexin/Hypocretin Systems in the Sleep Deprivation Pre-Ischemia. PLoS ONE, 2017, 12, e0168430.	1.1	23
64	REM sleep stabilizes hypothalamic representation of feeding behavior. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19590-19598.	3.3	18
65	Amphetamine- and cocaine-induced conditioned place preference and concomitant psychomotor sensitization in mice with genetically inactivated melanin-concentrating hormone MCH1 receptor. European Journal of Pharmacology, 2008, 599, 72-80.	1.7	17
66	Alcohol Drinking in MCH Receptor-1-Deficient Mice. Alcoholism: Clinical and Experimental Research, 2007, 31, 1325-1337.	1.4	16
67	Reciprocal Lateral Hypothalamic and Raphe GABAergic Projections Promote Wakefulness. Journal of Neuroscience, 2021, 41, 4840-4849.	1.7	15
68	Wearable low-latency sleep stage classifier. , 2014, , .		14
69	MCH receptor deletion does not impair glucose-conditioned flavor preferences in mice. Physiology and Behavior, 2016, 163, 239-244.	1.0	14
70	MCH Neurons: Vigilant Workers in the Night. Sleep, 2013, 36, 1783-1786.	0.6	13
71	Assessing Epileptogenicity Using Phase-Locked High Frequency Oscillations: A Systematic Comparison of Methods. Frontiers in Neurology, 2019, 10, 1132.	1.1	13
72	Sleep as a model to understand neuroplasticity and recovery after stroke: Observational, perturbational and interventional approaches. Journal of Neuroscience Methods, 2019, 313, 37-43.	1.3	13

#	Article	IF	CITATIONS
73	Loss of Snord116 alters cortical neuronal activity in mice: a preclinical investigation of Prader–Willi syndrome. Human Molecular Genetics, 2020, 29, 2051-2064.	1.4	12
74	Sleep and Metabolism: Implication of Lateral Hypothalamic Neurons. Frontiers of Neurology and Neuroscience, 2021, 45, 75-90.	3.0	11
75	Optogenetics in Freely Moving Mammals: Dopamine and Reward. Cold Spring Harbor Protocols, 2015, 2015, pdb.top086330.	0.2	10
76	Anaesthesia and sleep. Clinical and Translational Neuroscience, 2017, 1, 2514183X1772628.	0.4	10
77	The evolutionarily conserved miRNA-137 targets the neuropeptide hypocretin/orexin and modulates the wake to sleep ratio. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2112225119.	3.3	9
78	Chronic Nicotine Exposure Alters Metabotropic Glutamate Receptor 5: Longitudinal PET Study and Behavioural Assessment in Rats. Neurotoxicity Research, 2019, 36, 806-816.	1.3	8
79	How the gut talks to the brain. Science, 2022, 376, 248-249.	6.0	8
80	Discharge and Role of GABA Pontomesencephalic Neurons in Cortical Activity and Sleep-Wake States Examined by Optogenetics and Juxtacellular Recordings in Mice. Journal of Neuroscience, 2020, 40, 5970-5989.	1.7	6
81	How REM sleep shapes hypothalamic computations for feeding behavior. Trends in Neurosciences, 2021, 44, 990-1003.	4.2	5
82	Promoter characterization of the mouse melanin-concentrating hormone receptor 1. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2004, 1678, 1-6.	2.4	4
83	Establishing a Fiber-Optic-Based Optical Neural Interface. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot083337-pdb.prot083337.	0.2	4
84	An integrated microprobe for the brain. Nature Biotechnology, 2015, 33, 259-260.	9.4	4
85	The Rat Mammary Gland as a Novel Site of Expression of Melanin-Concentrating Hormone Receptor 1 mRNA and Its Protein Immunoreactivity. Frontiers in Endocrinology, 2020, 11, 463.	1.5	4
86	Diet and sleep: is hypothalamus the link?. Current Opinion in Physiology, 2020, 15, 224-229.	0.9	4
87	Cell Type-Specific Targeting Strategies for Optogenetics. Neuromethods, 2018, , 25-42.	0.2	4
88	Optogenetic Dissection of Sleep-Wake States In Vitro and In Vivo. Handbook of Experimental Pharmacology, 2018, 253, 125-151.	0.9	2
89	Functions and Circuits of REM Sleep. Handbook of Behavioral Neuroscience, 2019, , 249-267.	0.7	2
90	"Diversity matters seriesâ€â€"The ALBA network. European Journal of Neuroscience, 2021, 54, 4055-4060.	1.2	2

#	Article	IF	CITATIONS
91	Optogenetic control of arousal neurons. , 2013, , 66-72.		1
92	Sleep: The Sound of a Local Alarm Clock. Current Biology, 2015, 25, R49-R51.	1.8	1
93	REM Sleep on It!. Neuropsychopharmacology, 2017, 42, 375-375.	2.8	1
94	Analysis of Neuronal Circuits with Optogenetics. Neuromethods, 2012, , 207-223.	0.2	1
95	Optogenetic Probing of Hypocretins' Regulation of Wakefulness. , 2011, , 129-137.		Ο
96	Optogenetics Dissection of Sleep Circuits and Functions. , 2018, , 535-564.		0
97	"The Trailblazers of Neuroscience.― European Journal of Neuroscience, 2021, 53, 2419-2420.	1.2	0
98	The Hypocretins/Orexins: Master Regulators of Arousal and Hyperarousal. , 2011, , 121-128.		0
99	Optogenetic Dissection of Neural Circuit Function in Behaving Animals. Neuromethods, 2015, , 143-160.	0.2	Ο
100	Die normale Schlafphysiologie. , 2020, , 5-19.		0
101	"Diversity matters seriesâ€â€"The Black In Neuro movement. European Journal of Neuroscience, 2022, 55, 343-349.	1.2	0
102	Sleep to Survive Predators. Neuroscience Bulletin, 2022, 38, 1114-1116.	1.5	0