
Taohai Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8393079/publications.pdf Version: 2024-02-01

Тлонаци

#	Article	IF	CITATIONS
1	Preparation of recyclable CdS photocatalytic and superhydrophobic films with photostability by using a screen-printing technique. Journal of Materials Chemistry A, 2015, 3, 16934-16940.	10.3	46
2	One-step synthesis of Bi2WO6/TiO2 heterojunctions with enhanced photocatalytic and superhydrophobic property via hydrothermal method. Journal of Materials Science, 2016, 51, 1032-1042.	3.7	42
3	Metallic Contact between MoS ₂ and Ni via Au Nanoglue. Small, 2018, 14, e1704526.	10.0	32
4	Synthesis of Ag-loaded Sb2WO6 microsphere with enhanced photocatalytic ability for organic dyes degradations under different light irradiations. Journal of Molecular Liquids, 2018, 272, 27-36.	4.9	30
5	Photocatalytic degradation of organic dyes by La ³⁺ /Ce ³⁺ -H ₃ PW ₁₂ O ₄₀ under different light irradiation. Dalton Transactions, 2014, 43, 9061-9069.	3.3	29
6	Surfactant-Free and Controlled Synthesis of Hexagonal CeVO ₄ Nanoplates: Photocatalytic Activity and Superhydrophobic Property. ChemistryOpen, 2015, 4, 288-294.	1.9	27
7	Preparation of Graphene Oxide-Based Ink for Inkjet Printing. Journal of Nanoscience and Nanotechnology, 2018, 18, 713-718.	0.9	26
8	One-pot hydrothermal synthesis of BiVO4 microspheres with mixed crystal phase and Sm3+-doped BiVO4 for enhanced photocatalytic activity. Journal of Materials Science, 2017, 52, 1679-1693.	3.7	23
9	Loading AgCl@Ag on phosphotungstic acid modified macrocyclic coordination compound: Z-scheme photocatalyst for persistent pollutant degradation and hydrogen evolution. Journal of Colloid and Interface Science, 2019, 547, 50-59.	9.4	23
10	Transition Metal Adsorbed-Doped ZnO Monolayer: 2D Dilute Magnetic Semiconductor, Magnetic Mechanism, and Beyond 2D. ACS Omega, 2017, 2, 1192-1197.	3.5	22
11	A one-step ionic liquid-assisted ultrasonic method for the preparation of BiOCl/m-BiVO ₄ heterojunctions with enhanced visible light photocatalytic activity. CrystEngComm, 2015, 17, 7676-7683.	2.6	21
12	One-pot synthesis of Ag+ doped BiVO4 microspheres with enhanced photocatalytic activity via a facile hydrothermal method. Journal of Physics and Chemistry of Solids, 2016, 92, 11-18.	4.0	21
13	Nanosecond laser coloration on stainless steel surface. Scientific Reports, 2017, 7, 7092.	3.3	21
14	Studies on the Effect of Nano-Sized MgO in Magnesium-Ion Conducting Gel Polymer Electrolyte for Rechargeable Magnesium Batteries. Energies, 2017, 10, 1215.	3.1	21
15	Magnetic MoS2 pizzas and sandwiches with Mnn (n = 1–4) cluster toppings and fillings: A first-principles investigation. Scientific Reports, 2016, 6, 19504.	3.3	20
16	Introducing Magnetism into 2D Nonmagnetic Inorganic Layered Crystals: A Brief Review from First-Principles Aspects. Crystals, 2018, 8, 24.	2.2	17
17	High catalytic active palladium nanoparticles gradually discharged from multilayer films to promote Suzuki, Heck and Sonogashira cross coupling reactions. Journal of Colloid and Interface Science, 2016, 463, 13-21.	9.4	16
18	Phase and morphology controllable synthesis of superhydrophobic Sb2O3 via a solvothermal method. Journal of Alloys and Compounds, 2017, 721, 149-156.	5.5	16

Ταοήαι Li

#	Article	IF	CITATIONS
19	Bi ₂ WO ₆ Nanosheets Synthesized by a Hydrothermal Method: Photocatalytic Activity Driven by Visible Light and the Superhydrophobic Property with Water Adhesion. European Journal of Inorganic Chemistry, 2015, 2015, 2560-2564.	2.0	14
20	Nickel nanoparticle-activated MoS ₂ for efficient visible light photocatalytic hydrogen evolution. Nanoscale, 2022, 14, 8601-8610.	5.6	11
21	Shape-controlled hydrothermal synthesis of superhydrophobic and superoleophilic BaMnF4micro/nanostructures. CrystEngComm, 2016, 18, 3585-3593.	2.6	10
22	Porous coordination polymer coatings fabricated from Cu ₃ (BTC) ₂ ·3H ₂ O with excellent superhydrophobic and superoleophilic properties. New Journal of Chemistry, 2016, 40, 10554-10559.	2.8	10
23	Effective oil–water mixture separation and photocatalytic dye decontamination through nickel-dimethylglyoxime microtubes coated superhydrophobic and superoleophilic films. RSC Advances, 2021, 11, 5035-5043.	3.6	10
24	Removal of RhB From Aqueous Solutions by Two Polyoxometalates Adsorbents. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 1048-1055.	3.7	9
25	Facile fabrication of corrosion-resistant superhydrophobic and superoleophilic surfaces with MnWO4:Dy3+ microbouquets. Dalton Transactions, 2014, 43, 5801.	3.3	8
26	Impacts of ionic liquid capping on the morphology and photocatalytic performance of SbPO4 crystals. CrystEngComm, 2018, 20, 4305-4312.	2.6	8
27	Nano-structured NaLa(MoO4)2 and Eu3+-doped NaLa(MoO4)2: Synthesis, characterizations, photoluminescence and superhydrophobic properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 207, 39-46.	3.5	7
28	Fast Microwave-Assisted Synthesis and Photoluminescence of CaWO4Nanocrystals. Journal of Chemistry, 2013, 2013, 1-5.	1.9	6
29	One-pot hydrothermal synthesis of ZnC ₄ O ₄ concave microspheres with superhydrophobic and superoleophilic properties. CrystEngComm, 2017, 19, 528-536.	2.6	5
30	Trace amount Cull (ppm) and mixture design of Cull/Pdll catalyzed Suzuki cross-coupling reactions based on the cooperative interaction of metal with a conjugated pyridylspirobifluorene. Journal of Materials Chemistry A, 2015, 3, 6265-6270.	10.3	4
31	Excellent photo- and sono- catalytic BiOF/Bi2O3 heterojunction nanoflakes synthesized via pH-dependent and ionic liquid assisted solvothermal method. Materials Today Communications, 2020, 23, 100980.	1.9	4
32	Fabrication and Superhydrophobic Property of ZnO Micro/Nanocrystals via a Hydrothermal Route. Journal of Nanomaterials, 2014, 2014, 1-6.	2.7	3
33	Evolution of lithium clusters to superatomic Li3O+. Applied Physics Letters, 2017, 111, .	3.3	3
34	A Facile Synthesis of Heterojunctional BiVO4/Bi5O7I with Enhanced Photocatalytic Activity for Organic Dyes Degradation. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 1829-1838.	3.7	3
35	Synthesis of CdS-loaded (CuC ₁₀ H ₂₆ N ₆) ₃ (PW ₁₂ O ₄₀) <sub= for enhanced photocatalytic degradation of tetracycline under simulated solar light irradiation. RSC Advances. 2020. 10. 37072-37079.</sub= 	>2	3
36	Enhanced adsorption and dye separation ability of low-cost sepiolite acidified by polyoxometalate acid. Journal of the Iranian Chemical Society, 2022, 19, 1457-1465.	2.2	3

Ταομαι Li

#	Article	IF	CITATIONS
37	Nearly monodisperse Dy ₂ Sn ₂ O ₇ nanospheres: hydrothermal synthesis without a template or surfactant and effective sonocatalytic performance. New Journal of Chemistry, 2022, 46, 936-940.	2.8	3
38	Determination of the second step microstructure for superhydrophobic surfaces. Surface and Interface Analysis, 2013, 45, 919-929.	1.8	2
39	A facile one-step hydrothermal preparation of Mn(VO3)2 under different pH conditions and their photocatalytic performance. Journal of the Iranian Chemical Society, 2021, 18, 567-571.	2.2	2
40	Study of the Effect of F-Doping on Lithium Electrochemical Behavior in MnWO4 Anode Nanomaterials. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 3175.	3.7	2
41	Ultrasound-assisted synthesis of NaZn2(OH)(MoO4)2·H2O for effective sonocatalytic performance. Materials Science in Semiconductor Processing, 2022, 144, 106562.	4.0	2
42	Synthesis of 3D α-Zn3(VO4)2 nanoflower with the property of photoluminescence and superhydrophobicity via a facile precipitation method. Journal of the Iranian Chemical Society, 2015, 12, 1687-1692.	2.2	1
43	Facile synthetic routes for photocatalytic Pb ₃ (BTC) ₂ ·H ₂ O coordination polymers. RSC Advances, 2021, 11, 21979-21985.	3.6	1

Metal-Semiconductor Contacts: Metallic Contact between MoS2 and Ni via Au Nanoglue (Small) Tj ETQq0 0 0 rgBT (Overlock 10 Tf 50 4

45 Fo Pa	ormation of BaF2 microcrystals as superhydrophobic materials via a hydrothermal method. Chemical apers, 2022, 76, 961-966.	2.2	Ο	
-------------	--	-----	---	--