
Yancong Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8392800/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flexible Composite Solid Electrolyte Facilitating Highly Stable "Soft Contacting―Li–Electrolyte Interface for Solid State Lithium″on Batteries. Advanced Energy Materials, 2017, 7, 1701437.	19.5	237
2	Understanding Thermodynamic and Kinetic Contributions in Expanding the Stability Window of Aqueous Electrolytes. CheM, 2018, 4, 2872-2882.	11.7	187
3	Few-Layer Tin Sulfide: A New Black-Phosphorus-Analogue 2D Material with a Sizeable Band Gap, Odd–Even Quantum Confinement Effect, and High Carrier Mobility. Journal of Physical Chemistry C, 2016, 120, 22663-22669.	3.1	130
4	Stable Triple Cation Perovskite Precursor for Highly Efficient Perovskite Solar Cells Enabled by Interaction with 18C6 Stabilizer. Advanced Functional Materials, 2020, 30, 1908613.	14.9	65
5	2D hetero-nanosheets to enable ultralow thermal conductivity by all scale phonon scattering for highly thermoelectric performance. Nano Energy, 2016, 30, 780-789.	16.0	54
6	2D amorphous iron phosphate nanosheets with high rate capability and ultra-long cycle life for sodium ion batteries. Journal of Materials Chemistry A, 2016, 4, 4479-4484.	10.3	33
7	Relationship between Dispersion and Conductivity of Polymer Nanocomposites: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2012, 116, 13081-13088.	2.6	31
8	Formation of mono/bi-layer iron phosphate and nucleation of LiFePO 4 nano-crystals from amorphous 2D sheets in charge/discharge process for cathode in high-performance Li-ion batteries. Nano Energy, 2015, 18, 187-195.	16.0	30
9	Liâ€lon Cooperative Migration and Oxyâ€Sulfide Synergistic Effect in Li ₁₄ P ₂ Ge ₂ S _{16â^'6} <i>_x</i> O <i>_x</i>	0.0ki/	27
10	Insight into fast ion migration kinetics of a new hybrid single Li-ion conductor based on aluminate complexes for solid-state Li-ion batteries. Nanoscale, 2018, 10, 5975-5984.	5.6	25
11	Construction of particle network for ultrahigh permittivity of dielectric polymer composite toward energy devices: A molecular dynamics study. Nano Energy, 2019, 64, 103985.	16.0	22
12	Building a smart surface with converse temperature-dependent wettability based on poly(acrylamide- <i>co</i> -acrylonitrile). Chemical Communications, 2020, 56, 2837-2840.	4.1	18
13	Nitrile-butadiene rubber composites with improved electromechanical properties obtained by modification of BaTiO3 with co-deposited catechol/polyamine and silane grafting. Polymer, 2019, 183, 121813.	3.8	17
14	Dipole-modified graphene with ultrahigh gas sensibility. Applied Surface Science, 2018, 440, 409-414.	6.1	15
15	Evolution of conductive network and properties of nanorod/polymer composite under tensile strain. Journal of Chemical Physics, 2013, 139, 024903.	3.0	13
16	Role of block copolymer morphology on particle percolation of polymer nanocomposites. Soft Matter, 2014, 10, 8236-8244.	2.7	13
17	Towards optimization of electrical network and mechanical property of polymer nanocomposites with grafted nanoparticles. Polymer, 2014, 55, 3178-3185.	3.8	11
18	Phase separation of comb polymer nanocomposite melts. Soft Matter, 2016, 12, 1385-1400.	2.7	10

YANCONG FENG

#	Article	IF	CITATIONS
19	Formation mechanism of bound rubber in elastomer nanocomposites: a molecular dynamics simulation study. RSC Advances, 2018, 8, 13008-13017.	3.6	10
20	Where is the best substitution position for amino groups on carbon dots: a computational strategy toward long-wavelength red emission. Journal of Materials Chemistry C, 2021, 9, 14444-14452.	5.5	9
21	Understanding the effect of antisolvent on processing window and efficiency for large-area flexible perovskite solar cells. Materials Today Physics, 2021, 21, 100565.	6.0	9
22	Additive Engineering in Antisolvent for Widening the Processing Window and Promoting Perovskite Seed Formation in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 17348-17357.	8.0	9
23	Structure and effective interactions of comb polymer nanocomposite melts. Journal of Chemical Physics, 2014, 141, 204901.	3.0	8
24	Band Alignment for Rectification and Tunneling Effects in Al ₂ O ₃ Atomic-Layer-Deposited on Back Contact for CdTe Solar Cell. ACS Applied Materials & Interfaces, 2016, 8, 28143-28148.	8.0	8
25	Multiscale Interface Effect on Homogeneous Dielectric Structure of ZrO2/Teflon Nanocomposite for Electrowetting Application. Polymers, 2018, 10, 1119.	4.5	8
26	Magnetic polymeric nanoassemblies for magnetic resonance imaging-combined cancer theranostics. International Journal of Nanomedicine, 2018, Volume 13, 4263-4281.	6.7	8
27	Transition of interfacial capacitors in electrowetting on a graphite surface by ion intercalation. Physical Chemistry Chemical Physics, 2019, 21, 26284-26291.	2.8	7
28	Extension of integral equation theory to microphase separation of block copolymers. Molecular Physics, 2015, 113, 880-889.	1.7	5
29	Nanocrystals generated under tensile stress in metallic glasses with phase selectivity. Nanoscale, 2017, 9, 15542-15549.	5.6	3
30	Electrowetting Performances of Novel Fluorinated Polymer Dielectric Layer Based on Poly(1H,1H,2H,2H-perfluoroctylmethacrylate) Nanoemulsion. Polymers, 2017, 9, 217.	4.5	3
31	Protonation-induced molecular permeation at the oil/water interface in an electric field. Physical Chemistry Chemical Physics, 2018, 20, 29012-29017.	2.8	3
32	Binary Supramolecular Chirality "1/0―Switched by Hierarchical Photoisomerization of a Flowerâ€Like Compound with a Binaphthol Core and Alkylâ€Functionalized Azobenzene Side Chains. ChemPlusChem, 2020, 85, 1104-1110.	2.8	3
33	Few-Layer Fe ₃ (PO ₄) ₂ •8H ₂ O: Novel H-Bonded 2D Material and Its Abnormal Electronic Properties. Journal of Physical Chemistry C, 2016, 120, 26278-26283.	3.1	2
34	Quartz Microcrystal-Hybridized Organosilicone Encapsulant with Enhanced Optical and Thermal Performances. Polymers, 2018, 10, 84.	4.5	2
35	From Molecular-Scale Cavities to Nanoscale Dielectric Breakdown in Polydimethylsiloxane Induced by Local Electric Field. Macromolecules, 2022, 55, 1690-1699.	4.8	2
36	Water- and Heat-Induced Crack-Healing of UCST-Type Poly(acrylamide- <i>co</i> -acrylonitrile) with Intrinsic Controllability and Reversibility. ACS Applied Polymer Materials, 2022, 4, 4860-4867.	4.4	2

#	Article	IF	CITATIONS
37	Comparison with Experiment, Model, and Simulation for Thermal Conductive Mechanism of Polymer Composites without Particle Network. Macromolecular Chemistry and Physics, 2021, 222, 2100200.	2.2	1
38	One-step formation of infrared reflection microsheets via local photo-induced in situ polymerization. RSC Advances, 2019, 9, 30503-30508.	3.6	0
39	Configuration-Controllable Polymeric Nanovehicles Self-Assembled in Pixel Grids under an Electric Field. ACS Applied Materials & Interfaces, 2020, 12, 4052-4060.	8.0	0