
Marcia C Haigis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8392484/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolomic and transcriptomic signatures of chemogenetic heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H451-H465.	3.2	14
2	Dangerous dynamic duo: Lactic acid and PD-1 blockade. Cancer Cell, 2022, 40, 127-130.	16.8	10
3	Tumor cells dictate anti-tumor immune responses by altering pyruvate utilization and succinate signaling in CD8+ TÂcells. Cell Metabolism, 2022, 34, 1137-1150.e6.	16.2	78
4	Pharmacologic Screening Identifies Metabolic Vulnerabilities of CD8+ T Cells. Cancer Immunology Research, 2021, 9, 184-199.	3.4	74
5	The aging lung: Physiology, disease, and immunity. Cell, 2021, 184, 1990-2019.	28.9	175
6	Cell-specific transcriptional control of mitochondrial metabolism by TIF1Î ³ drives erythropoiesis. Science, 2021, 372, 716-721.	12.6	25
7	Combined epigenetic and metabolic treatments overcome differentiation blockade in acute myeloid leukemia. IScience, 2021, 24, 102651.	4.1	4
8	SIRT4 is an early regulator of branched-chain amino acid catabolism that promotes adipogenesis. Cell Reports, 2021, 36, 109345.	6.4	32
9	Metabolic modeling of single Th17 cells reveals regulators of autoimmunity. Cell, 2021, 184, 4168-4185.e21.	28.9	203
10	Mitochondria: Their relevance during oocyte ageing. Ageing Research Reviews, 2021, 70, 101378.	10.9	80
11	Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity. Molecular Cell, 2021, 81, 3708-3730.	9.7	118
12	Development of a colorimetric α-ketoglutarate detection assay for prolyl hydroxylase domain (PHD) proteins. Journal of Biological Chemistry, 2021, 296, 100397.	3.4	10
13	Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism. Nature Metabolism, 2021, 3, 21-32.	11.9	250
14	The Role of Mitochondria in Aging and Cancer. Innovation in Aging, 2021, 5, 454-454.	0.1	0
15	Leveraging insights into cancer metabolism—a symposium report. Annals of the New York Academy of Sciences, 2020, 1462, 5-13.	3.8	3
16	PHD3 Loss Promotes Exercise Capacity and Fat Oxidation in Skeletal Muscle. Cell Metabolism, 2020, 32, 215-228.e7.	16.2	22
17	Astrocyte deletion of α2-Na/K ATPase triggers episodic motor paralysis in mice via a metabolic pathway. Nature Communications, 2020, 11, 6164.	12.8	23
18	Induction of a Timed Metabolic Collapse to Overcome Cancer Chemoresistance. Cell Metabolism, 2020, 32, 391-403.e6.	16.2	79

#	Article	IF	CITATIONS
19	Obesity Shapes Metabolism in the Tumor Microenvironment to Suppress Anti-Tumor Immunity. Cell, 2020, 183, 1848-1866.e26.	28.9	347
20	The human mitochondrial 12S rRNA m4C methyltransferase METTL15 is required for mitochondrial function. Journal of Biological Chemistry, 2020, 295, 8505-8513.	3.4	34
21	Nitrogen Metabolism in Cancer and Immunity. Trends in Cell Biology, 2020, 30, 408-424.	7.9	72
22	Localized Metabolomic Gradients in Patient-Derived Xenograft Models of Glioblastoma. Cancer Research, 2020, 80, 1258-1267.	0.9	67
23	The effects of age and systemic metabolism on anti-tumor T cell responses. ELife, 2020, 9, .	6.0	34
24	Metabolic Competition in the Tumor Microenvironment. FASEB Journal, 2020, 34, 1-1.	0.5	0
25	T Cell Activation Depends on Extracellular Alanine. Cell Reports, 2019, 28, 3011-3021.e4.	6.4	117
26	Adaptation of Human iPSC-Derived Cardiomyocytes to Tyrosine Kinase Inhibitors Reduces Acute Cardiotoxicity via Metabolic Reprogramming. Cell Systems, 2019, 8, 412-426.e7.	6.2	49
27	Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science, 2019, 363, 1217-1222.	12.6	281
28	Sweet Temptation: From Sugar Metabolism to Gene Regulation. Immunity, 2019, 51, 980-981.	14.3	10
29	Transcriptional Regulation of Coenzyme Q Biosynthesis By TIF1Î ³ Drives Erythropoiesis. Blood, 2019, 134, 152-152.	1.4	0
30	The Distinctive Metabolic Environment of the Bone Marrow Niche Drives Leukemia Chemoresistance. Blood, 2019, 134, 3725-3725.	1.4	0
31	Dynamic Regulation of Long-Chain Fatty Acid Oxidation by a Noncanonical Interaction between the MCL-1 BH3 Helix and VLCAD. Molecular Cell, 2018, 69, 729-743.e7.	9.7	45
32	Small-Molecule Screen Identifies De Novo Nucleotide Synthesis as a Vulnerability of Cells Lacking SIRT3. Cell Reports, 2018, 22, 1945-1955.	6.4	31
33	Chemical and Physiological Features of Mitochondrial Acylation. Molecular Cell, 2018, 72, 610-624.	9.7	34
34	Defective respiration and one-carbon metabolism contribute to impaired naÃ ⁻ ve T cell activation in aged mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13347-13352.	7.1	93
35	l-Alanine activates hepatic AMP-activated protein kinase and modulates systemic glucose metabolism. Molecular Metabolism, 2018, 17, 61-70.	6.5	33
36	Transaminase Inhibition by 2-Hydroxyglutarate Impairs Glutamate Biosynthesis and Redox Homeostasis in Glioma. Cell, 2018, 175, 101-116.e25.	28.9	234

#	Article	IF	CITATIONS
37	The multifaceted contributions of mitochondria to cellular metabolism. Nature Cell Biology, 2018, 20, 745-754.	10.3	969
38	Inhibition of epithelial cell migration and Src/FAK signaling by SIRT3. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7057-7062.	7.1	55
39	Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature, 2018, 560, 102-106.	27.8	380
40	Mitochondrial Sirtuins. , 2018, , 95-115.		1
41	SIRT4 Is a Regulator of Insulin Secretion. Cell Chemical Biology, 2017, 24, 656-658.	5.2	24
42	Mitochondrial Sirtuins and Molecular Mechanisms of Aging. Trends in Molecular Medicine, 2017, 23, 320-331.	6.7	242
43	mTOR and HDAC Inhibitors Converge on the TXNIP/Thioredoxin Pathway to Cause Catastrophic Oxidative Stress and Regression of RAS-Driven Tumors. Cancer Discovery, 2017, 7, 1450-1463.	9.4	87
44	Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science, 2017, 358, 941-946.	12.6	303
45	An LC-MS Approach to Quantitative Measurement of Ammonia Isotopologues. Scientific Reports, 2017, 7, 10304.	3.3	18
46	Strength in numbers: Phosphofructokinase polymerization prevails in the liver. Journal of Cell Biology, 2017, 216, 2239-2241.	5.2	4
47	Mitochondrial Biogenesis and Proteome Remodeling Promote One-Carbon Metabolism for T Cell Activation. Cell Metabolism, 2016, 24, 104-117.	16.2	282
48	Sirtuins in Cancer – Emerging Role as Modulators of Metabolic Reprogramming. , 2016, , 171-190.		0
49	Suppression by TFR cells leads to durable and selective inhibition of B cell effector function. Nature Immunology, 2016, 17, 1436-1446.	14.5	189
50	Mitochondria and Cancer. Cell, 2016, 166, 555-566.	28.9	1,203
51	PHD3 Loss in Cancer Enables Metabolic Reliance on Fatty Acid Oxidation via Deactivation of ACC2. Molecular Cell, 2016, 63, 1006-1020.	9.7	120
52	Mitochondrial Sirtuin Network Reveals Dynamic SIRT3-Dependent Deacetylation in Response to Membrane Depolarization. Cell, 2016, 167, 985-1000.e21.	28.9	259
53	Mitochondrial Metabolism in T Cell Activation and Senescence: A Mini-Review. Gerontology, 2015, 61, 131-138.	2.8	50
54	Nuclear respiratory factor 2 induces <scp>SIRT</scp> 3 expression. Aging Cell, 2015, 14, 818-825.	6.7	68

#	Article	IF	CITATIONS
55	Sirtuins and the Metabolic Hurdles in Cancer. Current Biology, 2015, 25, R569-R583.	3.9	60
56	Defective TFH Cell Function and Increased TFR Cells Contribute to Defective Antibody Production in Aging. Cell Reports, 2015, 12, 163-171.	6.4	112
57	Intersections between mitochondrial sirtuin signaling and tumor cell metabolism. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 242-255.	5.2	18
58	Sirtuins in Cancer: a Balancing Act between Genome Stability and Metabolism. Molecules and Cells, 2015, 38, 750-758.	2.6	56
59	SIRT4 Protein Suppresses Tumor Formation in Genetic Models of Myc-induced B Cell Lymphoma. Journal of Biological Chemistry, 2014, 289, 4135-4144.	3.4	106
60	Luciferase-Based Reporter to Monitor the Transcriptional Activity of the SIRT3 Promoter. Methods in Enzymology, 2014, 543, 141-163.	1.0	8
61	Neurotrophin receptor TrkB promotes lung adenocarcinoma metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10299-10304.	7.1	77
62	PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promoteÂmetastasis. Nature Cell Biology, 2014, 16, 992-1003.	10.3	1,073
63	Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10574-10579.	7.1	227
64	SIRT4 Represses Peroxisome Proliferator-Activated Receptor α Activity To Suppress Hepatic Fat Oxidation. Molecular and Cellular Biology, 2013, 33, 4552-4561.	2.3	132
65	A novel AMPK-dependent FoxO3A-SIRT3 intramitochondrial complex sensing glucose levels. Cellular and Molecular Life Sciences, 2013, 70, 2015-2029.	5.4	85
66	Clutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature, 2013, 496, 101-105.	27.8	1,562
67	SIRT4 Has Tumor-Suppressive Activity and Regulates the Cellular Metabolic Response to DNA Damage by Inhibiting Mitochondrial Glutamine Metabolism. Cancer Cell, 2013, 23, 450-463.	16.8	389
68	The mTORC1 Pathway Stimulates Glutamine Metabolism and Cell Proliferation by Repressing SIRT4. Cell, 2013, 153, 840-854.	28.9	505
69	SIRT4 Coordinates the Balance between Lipid Synthesis and Catabolism by Repressing Malonyl CoA Decarboxylase. Molecular Cell, 2013, 50, 686-698.	9.7	315
70	SIRT3 regulation of mitochondrial oxidative stress. Experimental Gerontology, 2013, 48, 634-639.	2.8	248
71	HDAC6 and SIRT2 Regulate the Acetylation State and Oncogenic Activity of Mutant K-RAS. Molecular Cancer Research, 2013, 11, 1072-1077.	3.4	121
72	The Protein Deacetylase SIRT3 Prevents Oxidative Stress-induced Keratinocyte Differentiation. Journal of Biological Chemistry, 2013, 288, 36484-36491.	3.4	30

#	Article	IF	CITATIONS
73	Skeletal muscle transcriptional coactivator PGC-1α mediates mitochondrial, but not metabolic, changes during calorie restriction. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2931-2936.	7.1	94
74	Acetylation-Dependent Regulation of Skp2 Function. Cell, 2012, 150, 179-193.	28.9	180
75	From Sirtuin Biology to Human Diseases: An Update. Journal of Biological Chemistry, 2012, 287, 42444-42452.	3.4	218
76	Metabolic regulation by SIRT3: implications for tumorigenesis. Trends in Molecular Medicine, 2012, 18, 516-523.	6.7	108
77	SIRT3 Is a Mitochondrial Tumor Suppressor: A Scientific Tale That Connects Aberrant Cellular ROS, the Warburg Effect, and Carcinogenesis. Cancer Research, 2012, 72, 2468-2472.	0.9	166
78	Sirtuins in Aging and Age-Related Diseases. , 2011, , 243-274.		7
79	SIRT3 Opposes Reprogramming of Cancer Cell Metabolism through HIF1α Destabilization. Cancer Cell, 2011, 19, 416-428.	16.8	690
80	Succinate Dehydrogenase Is a Direct Target of Sirtuin 3 Deacetylase Activity. PLoS ONE, 2011, 6, e23295.	2.5	310
81	Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends in Biochemical Sciences, 2010, 35, 669-675.	7.5	549
82	Sirtuins regulate key aspects of lipid metabolism. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1652-1657.	2.3	102
83	Mammalian Sirtuins: Biological Insights and Disease Relevance. Annual Review of Pathology: Mechanisms of Disease, 2010, 5, 253-295.	22.4	1,742
84	The Aging Stress Response. Molecular Cell, 2010, 40, 333-344.	9.7	451
85	New roles for sirtuins in mitochondrial metabolism. FASEB Journal, 2010, 24, 198.2.	0.5	Ο
86	SIRT5 Deacetylates Carbamoyl Phosphate Synthetase 1 and Regulates the Urea Cycle. Cell, 2009, 137, 560-570.	28.9	677
87	Mammalian Sir2 Homolog SIRT3 Regulates Global Mitochondrial Lysine Acetylation. Molecular and Cellular Biology, 2007, 27, 8807-8814.	2.3	1,097
88	Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Genes and Development, 2006, 20, 2913-2921.	5.9	1,138
89	SIRT4 Inhibits Glutamate Dehydrogenase and Opposes the Effects of Calorie Restriction in Pancreatic β Cells. Cell, 2006, 126, 941-954.	28.9	1,053
90	Calorie restriction extends yeast life span by lowering the level of NADH. Genes and Development, 2004, 18, 12-16.	5.9	566

#	Article	IF	CITATIONS
91	Induction of a Timed Metabolic Collapse to Overcome Cancer Chemoresistance. SSRN Electronic Journal, 0, , .	0.4	0