David A Fidock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/839206/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mutations in the P. falciparum Digestive Vacuole Transmembrane Protein PfCRT and Evidence for Their Role in Chloroquine Resistance. Molecular Cell, 2000, 6, 861-871.	9.7	1,268
2	Spiroindolones, a Potent Compound Class for the Treatment of Malaria. Science, 2010, 329, 1175-1180.	12.6	1,031
3	A Molecular Marker for Chloroquine-Resistant Falciparum Malaria. New England Journal of Medicine, 2001, 344, 257-263.	27.0	873
4	Antimalarial drug discovery: efficacy models for compound screening. Nature Reviews Drug Discovery, 2004, 3, 509-520.	46.4	633
5	Chloroquine Resistance inPlasmodium falciparumMalaria Parasites Conferred bypfcrtMutations. Science, 2002, 298, 210-213.	12.6	624
6	K13-propeller mutations confer artemisinin resistance in <i>Plasmodium falciparum</i> clinical isolates. Science, 2015, 347, 428-431.	12.6	563
7	Malaria: progress, perils, and prospects for eradication. Journal of Clinical Investigation, 2008, 118, 1266-1276.	8.2	516
8	Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nature Medicine, 2020, 26, 1602-1608.	30.7	459
9	Transformation with human dihydrofolate reductase renders malaria parasites insensitive to WR99210 but does not affect the intrinsic activity of proguanil. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 10931-10936.	7.1	457
10	A Worldwide Map of <i>Plasmodium falciparum</i> K13-Propeller Polymorphisms. New England Journal of Medicine, 2016, 374, 2453-2464.	27.0	449
11	Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nature Reviews Microbiology, 2009, 7, 864-874.	28.6	440
12	Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nature Medicine, 2017, 23, 917-928.	30.7	384
13	Targeting Plasmodium PI(4)K to eliminate malaria. Nature, 2013, 504, 248-253.	27.8	377
14	A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature, 2015, 522, 315-320.	27.8	353
15	Decreasingpfmdr1Copy Number inPlasmodium falciparumMalaria Heightens Susceptibility to Mefloquine, Lumefantrine, Halofantrine, Quinine, and Artemisinin. Journal of Infectious Diseases, 2006, 194, 528-535.	4.0	326
16	pfmdr1 mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum. Molecular Microbiology, 2005, 57, 913-926.	2.5	309
17	Imaging of <i>Plasmodium</i> Liver Stages to Drive Next-Generation Antimalarial Drug Discovery. Science, 2011, 334, 1372-1377.	12.6	308
18	A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype–genotype association study. Lancet Infectious Diseases, The, 2017, 17, 174-183.	9.1	302

#	Article	IF	CITATIONS
19	Quantitative assessment of <i>Plasmodium falciparum</i> sexual development reveals potent transmission-blocking activity by methylene blue. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1214-23.	7.1	293
20	The Fatty Acid Biosynthesis Enzyme Fabl Plays a Key Role in the Development of Liver-Stage Malarial Parasites. Cell Host and Microbe, 2008, 4, 567-578.	11.0	273
21	Artemisinin Action and Resistance in Plasmodium falciparum. Trends in Parasitology, 2016, 32, 682-696.	3.3	271
22	A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria. Science Translational Medicine, 2015, 7, 296ra111.	12.4	254
23	Targeting the Cell Stress Response of Plasmodium falciparum to Overcome Artemisinin Resistance. PLoS Biology, 2015, 13, e1002132.	5.6	254
24	Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathogens, 2016, 12, e1005763.	4.7	244
25	Targeting Tuberculosis and Malaria through Inhibition of Enoyl Reductase. Journal of Biological Chemistry, 2003, 278, 20851-20859.	3.4	227
26	Efficient site-specific integration in Plasmodium falciparum chromosomes mediated by mycobacteriophage Bxb1 integrase. Nature Methods, 2006, 3, 615-621.	19.0	223
27	PfCRT and its role in antimalarial drug resistance. Trends in Parasitology, 2012, 28, 504-514.	3.3	223
28	Alternative Mutations at Position 76 of the Vacuolar Transmembrane Protein PfCRT Are Associated with Chloroquine Resistance and Unique Stereospecific Quinine and Quinidine Responses inPlasmodium falciparum. Molecular Pharmacology, 2002, 61, 35-42.	2.3	222
29	Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies. Nature Communications, 2016, 7, 11553.	12.8	208
30	Antimalarial efficacy of MMV390048, an inhibitor of <i>Plasmodium</i> phosphatidylinositol 4-kinase. Science Translational Medicine, 2017, 9, .	12.4	204
31	(+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of <i>Plasmodium</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5455-62.	7.1	199
32	Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science, 2018, 359, 191-199.	12.6	194
33	Mitotic Evolution of Plasmodium falciparum Shows a Stable Core Genome but Recombination in Antigen Families. PLoS Genetics, 2013, 9, e1003293.	3.5	192
34	Structural Elucidation of the Specificity of the Antibacterial Agent Triclosan for Malarial Enoyl Acyl Carrier Protein Reductase. Journal of Biological Chemistry, 2002, 277, 13106-13114.	3.4	184
35	In Vivo Selection of <i>Plasmodium falciparum</i> Parasites Carrying the Chloroquine-Susceptible <i>pfcrt</i> K76 Allele after Treatment with Artemether-Lumefantrine in Africa. Journal of Infectious Diseases, 2009, 199, 750-757.	4.0	183
36	Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine. Nature Communications, 2018, 9, 3314.	12.8	183

#	Article	IF	CITATIONS
37	Evidence for Different Mechanisms of Chloroquine Resistance in 2PlasmodiumSpecies That Cause Human Malaria. Journal of Infectious Diseases, 2001, 183, 1653-1661.	4.0	175
38	Evolution of a unique Plasmodium falciparum chloroquine-resistance phenotype in association with pfcrt polymorphism in Papua New Guinea and South America. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 12689-12694.	7.1	169
39	A critical role for PfCRT K76T in Plasmodium falciparum verapamil-reversible chloroquine resistance. EMBO Journal, 2005, 24, 2294-2305.	7.8	168
40	Transporters involved in resistance to antimalarial drugs. Trends in Pharmacological Sciences, 2006, 27, 594-601.	8.7	166
41	Gene encoding a deubiquitinating enzyme is mutated in artesunate- and chloroquine-resistant rodent malaria parasites. Molecular Microbiology, 2007, 65, 27-40.	2.5	159
42	Evidence for a Central Role for PfCRT in Conferring Plasmodium falciparum Resistance to Diverse Antimalarial Agents. Molecular Cell, 2004, 15, 867-877.	9.7	157
43	Identification of conserved antigenic components for a cytotoxic T lymphocyte-inducing vaccine against malaria. Lancet, The, 1995, 345, 1003-1007.	13.7	154
44	Cycloguanil and Its Parent Compound Proguanil Demonstrate Distinct Activities against <i>Plasmodium falciparum</i> Malaria Parasites Transformed with Human Dihydrofolate Reductase. Molecular Pharmacology, 1998, 54, 1140-1147.	2.3	154
45	Defining the role of PfCRT in Plasmodium falciparum chloroquine resistance. Molecular Microbiology, 2005, 56, 323-333.	2.5	154
46	Site-specific genome editing in Plasmodium falciparum using engineered zinc-finger nucleases. Nature Methods, 2012, 9, 993-998.	19.0	149
47	Profiling the Essential Nature of Lipid Metabolism in Asexual Blood and Gametocyte Stages of Plasmodium falciparum. Cell Host and Microbe, 2015, 18, 371-381.	11.0	144
48	In Vitro Efficacy, Resistance Selection, and Structural Modeling Studies Implicate the Malarial Parasite Apicoplast as the Target of Azithromycin. Journal of Biological Chemistry, 2007, 282, 2494-2504.	3.4	131
49	Chemical Genomic Profiling for Antimalarial Therapies, Response Signatures, and Molecular Targets. Science, 2011, 333, 724-729.	12.6	130
50	Select pyrimidinones inhibit the propagation of the malarial parasite, Plasmodium falciparum. Bioorganic and Medicinal Chemistry, 2009, 17, 1527-1533.	3.0	128
51	Structure and drug resistance of the Plasmodium falciparum transporter PfCRT. Nature, 2019, 576, 315-320.	27.8	123
52	Molecular Mechanisms of Drug Resistance in <i>Plasmodium falciparum</i> Malaria. Annual Review of Microbiology, 2020, 74, 431-454.	7.3	123
53	KAF156 Is an Antimalarial Clinical Candidate with Potential for Use in Prophylaxis, Treatment, and Prevention of Disease Transmission. Antimicrobial Agents and Chemotherapy, 2014, 58, 5060-5067.	3.2	122
54	Genetic linkage of pfmdr1 with food vacuolar solute import in Plasmodium falciparum. EMBO Journal, 2006. 25, 3000-3011.	7.8	121

4

#	Article	IF	CITATIONS
55	Use of high-density tiling microarrays to identify mutations globally and elucidate mechanisms of drug resistance in Plasmodium falciparum. Genome Biology, 2009, 10, R21.	9.6	120
56	Drug resistance-associated pfCRT mutations confer decreased Plasmodium falciparum digestive vacuolar pH. Molecular and Biochemical Parasitology, 2004, 133, 99-114.	1.1	119
57	Genetic Disruption of the Plasmodium falciparum Digestive Vacuole Plasmepsins Demonstrates Their Functional Redundancy. Journal of Biological Chemistry, 2004, 279, 54088-54096.	3.4	116
58	Type II Fatty Acid Biosynthesis Is Essential for Plasmodium falciparum Sporozoite Development in the Midgut of Anopheles Mosquitoes. Eukaryotic Cell, 2014, 13, 550-559.	3.4	116
59	Supergenomic Network Compression and the Discovery of EXP1 as a Glutathione Transferase Inhibited by Artesunate. Cell, 2014, 158, 916-928.	28.9	113
60	A potent antimalarial benzoxaborole targets a Plasmodium falciparum cleavage and polyadenylation specificity factor homologue. Nature Communications, 2017, 8, 14574.	12.8	110
61	The chitinase PfCHT1 from the human malaria parasite Plasmodium falciparum lacks proenzyme and chitin-binding domains and displays unique substrate preferences. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 14061-14066.	7.1	108
62	Safety, tolerability, pharmacokinetics, and activity of the novel long-acting antimalarial DSM265: a two-part first-in-human phase 1a/1b randomised study. Lancet Infectious Diseases, The, 2017, 17, 626-635.	9.1	108
63	Developmental arrest of the human malaria parasite Plasmodium falciparum within the mosquito midgut via CTRP gene disruption. Molecular Microbiology, 2000, 36, 1-9.	2.5	107
64	Antimalarial activity of single-dose DSM265, a novel plasmodium dihydroorotate dehydrogenase inhibitor, in patients with uncomplicated Plasmodium falciparum or Plasmodium vivax malaria infection: a proof-of-concept, open-label, phase 2a study. Lancet Infectious Diseases, The, 2018, 18, 874-883.	9.1	106
65	Priming the antimalarial pipeline. Nature, 2010, 465, 297-298.	27.8	104
66	Chloroquine Resistance Modulated in Vitro by Expression Levels of the Plasmodium falciparum Chloroquine Resistance Transporter. Journal of Biological Chemistry, 2003, 278, 33593-33601.	3.4	103
67	<i>Plasmodium falciparum</i> K13 Mutations Differentially Impact Ozonide Susceptibility and Parasite Fitness <i>In Vitro</i> . MBio, 2017, 8, .	4.1	103
68	Disruption of Plasmodium falciparum Chitinase Markedly Impairs Parasite Invasion of Mosquito Midgut. Infection and Immunity, 2001, 69, 4048-4054.	2.2	102
69	Recent clinical and molecular insights into emerging artemisinin resistance in Plasmodium falciparum. Current Opinion in Infectious Diseases, 2011, 24, 570-577.	3.1	102
70	Piperaquine Resistance Is Associated with a Copy Number Variation on Chromosome 5 in Drug-Pressured <i>Plasmodium falciparum</i> Parasites. Antimicrobial Agents and Chemotherapy, 2011, 55, 3908-3916.	3.2	102
71	Identification of MMV Malaria Box Inhibitors of Plasmodium falciparum Early-Stage Gametocytes Using a Luciferase-Based High-Throughput Assay. Antimicrobial Agents and Chemotherapy, 2013, 57, 6050-6062.	3.2	102
72	UDP-galactose and acetyl-CoA transporters as Plasmodium multidrug resistance genes. Nature Microbiology, 2016, 1, 16166.	13.3	102

#	Article	IF	CITATIONS
73	Association of a Novel Mutation in the Plasmodium falciparum Chloroquine Resistance Transporter With Decreased Piperaquine Sensitivity. Journal of Infectious Diseases, 2017, 216, 468-476.	4.0	102
74	Local emergence in Amazonia of Plasmodium falciparum k13 C580Y mutants associated with in vitro artemisinin resistance. ELife, 2020, 9, .	6.0	102
75	Adaptive evolution of malaria parasites in French Guiana: Reversal of chloroquine resistance by acquisition of a mutation in <i>pfcrt</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11672-11677.	7.1	101
76	Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science, 2018, 362, .	12.6	99
77	Plasmodium falciparum liver stage antigen-1 is well conserved and contains potent B and T cell determinants. Journal of Immunology, 1994, 153, 190-204.	0.8	98
78	A broad analysis of resistance development in the malaria parasite. Nature Communications, 2016, 7, 11901.	12.8	94
79	The selectable marker human dihydrofolate reductase enables sequential genetic manipulation of the Plasmodium berghei genome. Molecular and Biochemical Parasitology, 2000, 106, 199-212.	1.1	92
80	Advances in understanding the genetic basis of antimalarial drug resistance. Current Opinion in Microbiology, 2007, 10, 363-370.	5.1	92
81	DNA Repair Mechanisms and Their Biological Roles in the Malaria Parasite Plasmodium falciparum. Microbiology and Molecular Biology Reviews, 2014, 78, 469-486.	6.6	88
82	PfCRT and the trans-vacuolar proton electrochemical gradient: regulating the access of chloroquine to ferriprotoporphyrin IX. Molecular Microbiology, 2006, 62, 238-251.	2.5	85
83	Elucidating Mechanisms of Drug-Resistant Plasmodium falciparum. Cell Host and Microbe, 2019, 26, 35-47.	11.0	85
84	Plasmodium falciparum K13 mutations in Africa and Asia impact artemisinin resistance and parasite fitness. ELife, 2021, 10, .	6.0	85
85	A Variant PfCRT Isoform Can Contribute to <i>Plasmodium falciparum</i> Resistance to the First-Line Partner Drug Piperaquine. MBio, 2017, 8, .	4.1	82
86	Changes in genome organization of parasite-specific gene families during the Plasmodium transmission stages. Nature Communications, 2018, 9, 1910.	12.8	82
87	Artemisinin-resistant K13 mutations rewire Plasmodium falciparum's intra-erythrocytic metabolic program to enhance survival. Nature Communications, 2021, 12, 530.	12.8	82
88	Evidence for a pfcrt-Associated Chloroquine Efflux System in the Human Malarial Parasite Plasmodium falciparum. Biochemistry, 2005, 44, 9862-9870.	2.5	80
89	Recent highlights in antimalarial drug resistance and chemotherapy research. Trends in Parasitology, 2008, 24, 537-544.	3.3	80
90	Identifying apicoplastâ€ŧargeting antimalarials using highâ€ŧhroughput compatible approaches. FASEB Journal, 2011, 25, 3583-3593.	0.5	80

#	Article	IF	CITATIONS
91	Artemisia annua L. extracts inhibit the in vitro replication of SARS-CoV-2 and two of its variants. Journal of Ethnopharmacology, 2021, 274, 114016.	4.1	80
92	Identification of a Mutant PfCRT-Mediated Chloroquine Tolerance Phenotype in Plasmodium falciparum. PLoS Pathogens, 2010, 6, e1000887.	4.7	79
93	Allelic modifications of the cg2 and cg1 genes do not alter the chloroquine response of drug-resistant Plasmodium falciparum. Molecular and Biochemical Parasitology, 2000, 110, 1-10.	1.1	77
94	Role of <i>Plasmodium falciparum</i> Digestive Vacuole Plasmepsins in the Specificity and Antimalarial Mode of Action of Cysteine and Aspartic Protease Inhibitors. Antimicrobial Agents and Chemotherapy, 2009, 53, 4968-4978.	3.2	77
95	Cloning and characterization of a novel Plasmodium falciparum sporozoite surface antigen, STARP. Molecular and Biochemical Parasitology, 1994, 64, 219-232.	1.1	74
96	In vitro evaluations of antimalarial drugs and their relevance to clinical outcomes. International Journal for Parasitology, 2008, 38, 743-747.	3.1	74
97	Disruption of a Plasmodium falciparum gene linked to male sexual development causes early arrest in gametocytogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16813-16818.	7.1	73
98	Synthesis, biological activity, and X-ray crystal structural analysis of diaryl ether inhibitors of malarial enoyl acyl carrier protein reductase. Part 1: 4′-Substituted triclosan derivatives. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5247-5252.	2.2	69
99	Spatial and temporal mapping of the PfEMP1 export pathway in <i>Plasmodium falciparum</i> . Cellular Microbiology, 2013, 15, 1401-1418.	2.1	69
100	Comparative 3D genome organization in apicomplexan parasites. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3183-3192.	7.1	65
101	Probing the multifactorial basis of Plasmodium falciparum quinine resistance: Evidence for a strain-specific contribution of the sodium-proton exchanger PfNHE. Molecular and Biochemical Parasitology, 2009, 165, 122-131.	1.1	64
102	<i>Plasmodium falciparum</i> phosphoethanolamine methyltransferase is essential for malaria transmission. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18262-18267.	7.1	63
103	Luciferase-Based, High-Throughput Assay for Screening and Profiling Transmission-Blocking Compounds against Plasmodium falciparum Gametocytes. Antimicrobial Agents and Chemotherapy, 2016, 60, 2097-2107.	3.2	62
104	Subtle Changes in Endochin-Like Quinolone Structure Alter the Site of Inhibition within the Cytochrome <i>bc</i> ₁ Complex of Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 2015, 59, 1977-1982.	3.2	61
105	Insights into the intracellular localization, protein associations and artemisinin resistance properties of Plasmodium falciparumÂK13. PLoS Pathogens, 2020, 16, e1008482.	4.7	60
106	X-ray Structural Analysis of Plasmodium falciparum Enoyl Acyl Carrier Protein Reductase as a Pathway toward the Optimization of Triclosan Antimalarial Efficacy. Journal of Biological Chemistry, 2007, 282, 25436-25444.	3.4	59
107	Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum. Nature Chemical Biology, 2009, 5, 765-771.	8.0	59
108	Using Genetic Methods To Define the Targets of Compounds with Antimalarial Activity. Journal of Medicinal Chemistry, 2013, 56, 7761-7771.	6.4	59

#	Article	IF	CITATIONS
109	Malaria's Missing Number: Calculating the Human Component of R0 by a Within-Host Mechanistic Model of Plasmodium falciparum Infection and Transmission. PLoS Computational Biology, 2013, 9, e1003025.	3.2	59
110	Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite's food vacuole and alter drug sensitivities. Scientific Reports, 2015, 5, 14552.	3.3	59
111	Anti-PfGARP activates programmed cell death of parasites and reduces severe malaria. Nature, 2020, 582, 104-108.	27.8	59
112	Covalent Plasmodium falciparum-selective proteasome inhibitors exhibit a low propensity for generating resistance in vitro and synergize with multiple antimalarial agents. PLoS Pathogens, 2019, 15, e1007722.	4.7	58
113	Plasmodium falciparum sporozoite invasion is inhibited by naturally acquired or experimentally induced polyclonal antibodies to the STARP antigen. European Journal of Immunology, 1997, 27, 2502-2513.	2.9	56
114	CRISPR as9â€modified <i>pfmdr1</i> protects <i>Plasmodium falciparum</i> asexual blood stages and gametocytes against a class of piperazineâ€containing compounds but potentiates artemisininâ€based combination therapy partner drugs. Molecular Microbiology, 2016, 101, 381-393.	2.5	56
115	Inhibition of Resistance-Refractory P. falciparum Kinase PKG Delivers Prophylactic, Blood Stage, and Transmission-Blocking Antiplasmodial Activity. Cell Chemical Biology, 2020, 27, 806-816.e8.	5.2	56
116	Triaminopyrimidine is a fast-killing and long-acting antimalarial clinical candidate. Nature Communications, 2015, 6, 6715.	12.8	55
117	Differences in trans-stimulated chloroquine efflux kinetics are linked to PfCRT in Plasmodium falciparum. Molecular Microbiology, 2007, 64, 407-420.	2.5	54
118	Effects on growth, hemoglobin metabolism and paralogous gene expression resulting from disruption of genes encoding the digestive vacuole plasmepsins of Plasmodium falciparum. International Journal for Parasitology, 2007, 37, 317-327.	3.1	54
119	How can we identify parasite genes that underlie antimalarial drug resistance?. Pharmacogenomics, 2011, 12, 59-85.	1.3	54
120	Multicolor Bioluminescence Boosts Malaria Research: Quantitative Dual-Color Assay and Single-Cell Imaging in <i>Plasmodium falciparum</i> Parasites. Analytical Chemistry, 2014, 86, 8814-8821.	6.5	54
121	Defining the Determinants of Specificity of <i>Plasmodium</i> Proteasome Inhibitors. Journal of the American Chemical Society, 2018, 140, 11424-11437.	13.7	54
122	Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chemical Biology, 2020, 27, 158-171.e3.	5.2	54
123	Assessing risks of Plasmodium falciparum resistance to select next-generation antimalarials. Trends in Parasitology, 2021, 37, 709-721.	3.3	53
124	Synthesis and biological activity of diaryl ether inhibitors of malarial enoyl acyl carrier protein reductase. Part 2: 2′-Substituted triclosan derivatives. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2163-2169.	2.2	52
125	Investigations into the Role of the <i>Plasmodium falciparum</i> SERCA (PfATP6) L263E Mutation in Artemisinin Action and Resistance. Antimicrobial Agents and Chemotherapy, 2010, 54, 3842-3852.	3.2	52
126	Diversity-Oriented Synthesis Yields a Novel Lead for the Treatment of Malaria. ACS Medicinal Chemistry Letters, 2012, 3, 112-117.	2.8	52

#	Article	IF	CITATIONS
127	Combinatorial Genetic Modeling of <i>pfcrt</i> -Mediated Drug Resistance Evolution in <i>Plasmodium falciparum</i> . Molecular Biology and Evolution, 2016, 33, 1554-1570.	8.9	51
128	A tetraoxane-based antimalarial drug candidate that overcomes PfK13-C580Y dependent artemisinin resistance. Nature Communications, 2017, 8, 15159.	12.8	51
129	MalDA, Accelerating Malaria Drug Discovery. Trends in Parasitology, 2021, 37, 493-507.	3.3	51
130	A Method for Rapid Genetic Integration into Plasmodium falciparum Utilizing Mycobacteriophage Bxb1 Integrase. Methods in Molecular Biology, 2010, 634, 87-100.	0.9	50
131	<i>Plasmodium falciparum</i> Sec24 marks transitional ER that exports a model cargo via a diacidic motif. Molecular Microbiology, 2008, 68, 1535-1546.	2.5	49
132	The Antimalarial Natural Product Salinipostin A Identifies Essential α/β Serine Hydrolases Involved in Lipid Metabolism in P.Âfalciparum Parasites. Cell Chemical Biology, 2020, 27, 143-157.e5.	5.2	48
133	Disruption of the C-terminal region of EBA-175 in the Dd2/Nm clone of Plasmodium falciparum does not affect erythrocyte invasion. Molecular and Biochemical Parasitology, 2000, 110, 135-146.	1.1	47
134	Transfusion of stored blood impairs host defenses against <scp>G</scp> ramâ€negative pathogens in mice. Transfusion, 2014, 54, 2842-2851.	1.6	47
135	Balancing drug resistance and growth rates via compensatory mutations in the <scp><i>P</i></scp> <i>lasmodium falciparum</i> chloroquine resistance transporter. Molecular Microbiology, 2015, 97, 381-395.	2.5	47
136	Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activity. Nature Microbiology, 2017, 2, 1403-1414.	13.3	47
137	Parasiteâ€induced <scp>ER</scp> stress response in hepatocytes facilitates <i>Plasmodium</i> liver stage infection. EMBO Reports, 2015, 16, 955-964.	4.5	46
138	Protein Degradation Systems as Antimalarial Therapeutic Targets. Trends in Parasitology, 2017, 33, 731-743.	3.3	46
139	Artemisinin resistance phenotypes and K13 inheritance in a <i>Plasmodium falciparum</i> cross and <i>Aotus</i> model. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12513-12518.	7.1	46
140	Plasmodium falciparum resistance to piperaquine driven by PfCRT. Lancet Infectious Diseases, The, 2019, 19, 1168-1169.	9.1	46
141	Modeling Within-Host Effects of Drugs on Plasmodium falciparum Transmission and Prospects for Malaria Elimination. PLoS Computational Biology, 2014, 10, e1003434.	3.2	45
142	Conservation of a novel vacuolar transporter in Plasmodium species and its central role in chloroquine resistance of P. falciparum. Current Opinion in Microbiology, 2001, 4, 415-420.	5.1	44
143	Identification and Mechanistic Understanding of Dihydroorotate Dehydrogenase Point Mutations in <i>Plasmodium falciparum</i> that Confer <i>in Vitro</i> Resistance to the Clinical Candidate DSM265. ACS Infectious Diseases, 2019, 5, 90-101.	3.8	43
144	Characterization of the ATG8-conjugation system in 2 <i>Plasmodium</i> species with special focus on the liver stage. Autophagy, 2014, 10, 269-284.	9.1	42

#	Article	IF	CITATIONS
145	The Mu Subunit of Plasmodium falciparum Clathrin-Associated Adaptor Protein 2 Modulates <i>In Vitro</i> Parasite Response to Artemisinin and Quinine. Antimicrobial Agents and Chemotherapy, 2015, 59, 2540-2547.	3.2	42
146	Origin of Robustness in Generating Drug-Resistant Malaria Parasites. Molecular Biology and Evolution, 2014, 31, 1649-1660.	8.9	41
147	UCT943, a Next-Generation Plasmodium falciparum PI4K Inhibitor Preclinical Candidate for the Treatment of Malaria. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	40
148	Discovery of novel inhibitors targeting enoyl–acyl carrier protein reductase in Plasmodium falciparum by structure-based virtual screening. Biochemical and Biophysical Research Communications, 2007, 358, 686-691.	2.1	39
149	Chemogenomics identifies acetyl-coenzyme A synthetase as a target for malaria treatment and prevention. Cell Chemical Biology, 2022, 29, 191-201.e8.	5.2	39
150	Characterization of a PRL protein tyrosine phosphatase from Plasmodium falciparumâ~†. Molecular and Biochemical Parasitology, 2008, 158, 1-10.	1.1	37
151	<i>In Vivo</i> and <i>In Vitro</i> Antimalarial Properties of Azithromycin-Chloroquine Combinations That Include the Resistance Reversal Agent Amlodipine. Antimicrobial Agents and Chemotherapy, 2011, 55, 3115-3124.	3.2	37
152	Degrees of chloroquine resistance in Plasmodium – Is the redox system involved?. International Journal for Parasitology: Drugs and Drug Resistance, 2012, 2, 47-57.	3.4	37
153	<i>N</i> -Aryl-2-aminobenzimidazoles: Novel, Efficacious, Antimalarial Lead Compounds. Journal of Medicinal Chemistry, 2014, 57, 6642-6652.	6.4	37
154	A key role for lipoic acid synthesis during <i>Plasmodium</i> liver stage development. Cellular Microbiology, 2013, 15, 1585-1604.	2.1	36
155	Characterization of Novel Antimalarial Compound ACT-451840: Preclinical Assessment of Activity and Dose–Efficacy Modeling. PLoS Medicine, 2016, 13, e1002138.	8.4	35
156	Global Spread of Mutant PfCRT and Its Pleiotropic Impact on Plasmodium falciparum Multidrug Resistance and Fitness. MBio, 2019, 10, .	4.1	35
157	A Phase 1, Placebo-controlled, Randomized, Single Ascending Dose Study and a Volunteer Infection Study to Characterize the Safety, Pharmacokinetics, and Antimalarial Activity of the <i>Plasmodium</i> Phosphatidylinositol 4-Kinase Inhibitor MMV390048. Clinical Infectious Diseases, 2020 71 e657 e664	5.8	35
158	Prioritization of Molecular Targets for Antimalarial Drug Discovery. ACS Infectious Diseases, 2021, 7, 2764-2776.	3.8	35
159	Quinine Dimers Are Potent Inhibitors of the <i>Plasmodium falciparum</i> Chloroquine Resistance Transporter and Are Active against Quinoline-Resistant <i>P. falciparum</i> . ACS Chemical Biology, 2014, 9, 722-730.	3.4	34
160	Genetic screens reveal a central role for heme metabolism in artemisinin susceptibility. Nature Communications, 2020, 11, 4813.	12.8	34
161	Evidence of a Mild Mutator Phenotype in Cambodian Plasmodium falciparum Malaria Parasites. PLoS ONE, 2016, 11, e0154166.	2.5	34
162	Evolution of Fitness Cost-Neutral Mutant PfCRT Conferring P. falciparum 4-Aminoquinoline Drug Resistance Is Accompanied by Altered Parasite Metabolism and Digestive Vacuole Physiology. PLoS Pathogens, 2016, 12, e1005976.	4.7	34

#	Article	IF	CITATIONS
163	Oleic Acid Biosynthesis in Plasmodium falciparum: Characterization of the Stearoyl-CoA Desaturase and Investigation as a Potential Therapeutic Target. PLoS ONE, 2009, 4, e6889.	2.5	33
164	Safety, pharmacokinetics, and antimalarial activity of the novel plasmodium eukaryotic translation elongation factor 2 inhibitor M5717: a first-in-human, randomised, placebo-controlled, double-blind, single ascending dose study and volunteer infection study. Lancet Infectious Diseases, The, 2021, 21, 1713-1724.	9.1	32
165	Vesicular ATPase-overexpressing Cells Determine the Distribution of Malaria Parasite Oocysts on the Midguts of Mosquitoes. Journal of Biological Chemistry, 1999, 274, 12650-12655.	3.4	31
166	Evidence That Mutant PfCRT Facilitates the Transmission to Mosquitoes of Chloroquine-Treated Plasmodium Gametocytes. Journal of Infectious Diseases, 2011, 203, 228-236.	4.0	31
167	CRISPR-mediated genome editing of Plasmodium falciparum malaria parasites. Genome Medicine, 2014, 6, 63.	8.2	31
168	Preclinical Antimalarial Combination Study of M5717, a Plasmodium falciparum Elongation Factor 2 Inhibitor, and Pyronaridine, a Hemozoin Formation Inhibitor. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	30
169	A high susceptibility to redox imbalance of the transmissible stages of <scp><i>P</i></scp> <i>lasmodium falciparum</i> revealed with a luciferaseâ€based mature gametocyte assay. Molecular Microbiology, 2017, 104, 306-318.	2.5	28
170	P. falciparum CG2, Linked to Chloroquine Resistance, Does Not Resemble Na+/H+ Exchangers. Cell, 1998, 94, 285-286.	28.9	27
171	Stage-dependent Localization of a Novel Gene Product of the Malaria Parasite, Plasmodium falciparum. Journal of Biological Chemistry, 2001, 276, 26724-26731.	3.4	27
172	Identification of a role for the PfEMP1 semi-conserved head structure in protein trafficking to the surface of Plasmodium falciparum infected red blood cells. Cellular Microbiology, 2010, 12, 1446-1462.	2.1	27
173	Accelerated evolution and spread of multidrug-resistant Plasmodium falciparum takes down the latest first-line antimalarial drug in southeast Asia. Lancet Infectious Diseases, The, 2019, 19, 916-917.	9.1	27
174	Pan-active imidazolopiperazine antimalarials target the Plasmodium falciparum intracellular secretory pathway. Nature Communications, 2020, 11, 1780.	12.8	27
175	Structure-Guided Identification of Resistance Breaking Antimalarial N‑Myristoyltransferase Inhibitors. Cell Chemical Biology, 2019, 26, 991-1000.e7.	5.2	26
176	Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infectious Diseases, 2020, 6, 613-628.	3.8	26
177	Editing the <i>Plasmodium vivax</i> Genome, Using Zinc-Finger Nucleases. Journal of Infectious Diseases, 2015, 211, 125-129.	4.0	25
178	The antimalarial MMV688533 provides potential for single-dose cures with a high barrier to <i>Plasmodium falciparum</i> parasite resistance. Science Translational Medicine, 2021, 13, .	12.4	25
179	Hydrogen peroxide dynamics in subcellular compartments of malaria parasites using genetically encoded redox probes. Scientific Reports, 2017, 7, 10449.	3.3	24
180	Evidence for Regulation of Hemoglobin Metabolism and Intracellular Ionic Flux by the Plasmodium falciparum Chloroquine Resistance Transporter. Scientific Reports, 2018, 8, 13578.	3.3	24

#	Article	IF	CITATIONS
181	Potent Antimalarials with Development Potential Identified by Structure-Guided Computational Optimization of a Pyrrole-Based Dihydroorotate Dehydrogenase Inhibitor Series. Journal of Medicinal Chemistry, 2021, 64, 6085-6136.	6.4	24
182	Novel diaryl ureas with efficacy in a mouse model of malaria. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1022-1025.	2.2	22
183	Generation of Transmission-Competent Human Malaria Parasites with Chromosomally-Integrated Fluorescent Reporters. Scientific Reports, 2019, 9, 13131.	3.3	22
184	Expansion of a Specific Plasmodium falciparum PfMDR1 Haplotype in Southeast Asia with Increased Substrate Transport. MBio, 2020, 11, .	4.1	22
185	Evidence of Artemisinin-Resistant Malaria in Africa. New England Journal of Medicine, 2022, 386, 1385-1386.	27.0	22
186	<i>In Vitro</i> and <i>In Vivo</i> Activity of Solithromycin (CEM-101) against Plasmodium Species. Antimicrobial Agents and Chemotherapy, 2012, 56, 703-707.	3.2	21
187	Yeast-Based High-Throughput Screen Identifies Plasmodium falciparum Equilibrative Nucleoside Transporter 1 Inhibitors That Kill Malaria Parasites. ACS Chemical Biology, 2015, 10, 775-783.	3.4	21
188	The Plasmodium PI(4)K inhibitor KDU691 selectively inhibits dihydroartemisinin-pretreated Plasmodium falciparum ring-stage parasites. Scientific Reports, 2017, 7, 2325.	3.3	21
189	Plasmodium falciparum In Vitro Drug Resistance Selections and Gene Editing. Methods in Molecular Biology, 2019, 2013, 123-140.	0.9	21
190	Chloroquine-resistant isoforms of the Plasmodium falciparum chloroquine resistance transporter acidify lysosomal pH in HEK293 cells more than chloroquine-sensitive isoforms. Molecular and Biochemical Parasitology, 2006, 150, 288-299.	1.1	20
191	Genome-wide transcriptome profiling reveals functional networks involving the Plasmodium falciparum drug resistance transporters PfCRT and PfMDR1. BMC Genomics, 2015, 16, 1090.	2.8	20
192	Cyclization-blocked proguanil as a strategy to improve the antimalarial activity of atovaquone. Communications Biology, 2019, 2, 166.	4.4	20
193	Artemisia annua L. hot-water extracts show potent activity in vitro against Covid-19 variants including delta. Journal of Ethnopharmacology, 2022, 284, 114797.	4.1	20
194	Design of proteasome inhibitors with oral efficacy in vivo against <i>Plasmodium falciparum</i> and selectivity over the human proteasome. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
195	Conservation of the Plasmodium falciparum sporozoite surface protein gene, STARP, in field isolates and distinct species of Plasmodium. Molecular and Biochemical Parasitology, 1994, 67, 255-267.	1.1	18
196	Loss of malarial susceptibility to artemisinin in Thailand. Lancet, The, 2012, 379, 1928-1930.	13.7	18
197	UV-triggered Affinity Capture Identifies Interactions between the Plasmodium falciparum Multidrug Resistance Protein 1 (PfMDR1) and Antimalarial Agents in Live Parasitized Cells. Journal of Biological Chemistry, 2013, 288, 22576-22583.	3.4	18
198	Eliminating Malaria. Science, 2013, 340, 1531-1533.	12.6	18

#	Article	IF	CITATIONS
199	An integrated strategy for efficient vector construction and multi-gene expression in Plasmodium falciparum. Malaria Journal, 2013, 12, 373.	2.3	18
200	Stable Integration and Comparison of hGrx1-roGFP2 and sfroGFP2 Redox Probes in the Malaria Parasite Plasmodium falciparum. ACS Infectious Diseases, 2018, 4, 1601-1612.	3.8	18
201	Triclosan is minimally effective in rodent malaria models. Nature Medicine, 2011, 17, 33-34.	30.7	17
202	The RTS,S vaccine—a chance to regain the upper hand against malaria?. Cell, 2022, 185, 750-754.	28.9	17
203	Nucleotide sequence of the F41 fimbriae subunit gene inEscherichia coliB41. Nucleic Acids Research, 1989, 17, 2849-2849.	14.5	15
204	First evidence of pfcrt mutant Plasmodium falciparum in Madagascar. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2006, 100, 826-830.	1.8	15
205	Plasmodium berghei K13 Mutations Mediate <i>In Vivo</i> Artemisinin Resistance That Is Reversed by Proteasome Inhibition. MBio, 2020, 11, .	4.1	15
206	Genomic and Genetic Approaches to Studying Antimalarial Drug Resistance and Plasmodium Biology. Trends in Parasitology, 2021, 37, 476-492.	3.3	15
207	Genome projects, genetic analysis, and the changing landscape of malaria research. Current Opinion in Microbiology, 1999, 2, 415-419.	5.1	14
208	A ubiquitous Plasmodium protein displays a unique surface labeling pattern in sporozoitesâ~†. Molecular and Biochemical Parasitology, 2006, 148, 199-209.	1.1	14
209	Differential Drug Efflux or Accumulation Does Not Explain Variation in the Chloroquine Response of Plasmodium falciparum Strains Expressing the Same Isoform of Mutant PfCRT. Antimicrobial Agents and Chemotherapy, 2011, 55, 2310-2318.	3.2	14
210	Repositioning and Characterization of 1-(Pyridin-4-yl)pyrrolidin-2-one Derivatives as <i>Plasmodium</i> Cytoplasmic Prolyl-tRNA Synthetase Inhibitors. ACS Infectious Diseases, 2021, 7, 1680-1689.	3.8	14
211	The Plasmodium falciparum ABC transporter ABCl3 confers parasite strain-dependent pleiotropic antimalarial drug resistance. Cell Chemical Biology, 2022, 29, 824-839.e6.	5.2	14
212	Chemoprotective antimalarials identified through quantitative high-throughput screening of Plasmodium blood and liver stage parasites. Scientific Reports, 2021, 11, 2121.	3.3	14
213	Mutation in the Plasmodium falciparum BTB/POZ Domain of K13 Protein Confers Artemisinin Resistance. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0132021.	3.2	14
214	Mutations Conferring Drug Resistance in Malaria Parasite Drug Transporters Pgh1 and PfCRT Do Not Affect Steady-State Vacuolar Ca 2+. Antimicrobial Agents and Chemotherapy, 2005, 49, 4807-4808.	3.2	13
215	Evidence for the early emergence of piperaquine-resistant Plasmodium falciparum malaria and modeling strategies to mitigate resistance. PLoS Pathogens, 2022, 18, e1010278.	4.7	13
216	Safety, pharmacokinetics, and antimalarial activity of the novel triaminopyrimidine ZY-19489: a first-in-human, randomised, placebo-controlled, double-blind, single ascending dose study, pilot food-effect study, and volunteer infection study. Lancet Infectious Diseases, The, 2022, 22, 879-890.	9.1	13

#	Article	IF	CITATIONS
217	Preclinical characterization and target validation of the antimalarial pantothenamide MMV693183. Nature Communications, 2022, 13, 2158.	12.8	13
218	A var gene promoter implicated in severe malaria nucleates silencing and is regulated by 3′ untranslated region and intronic cis-elements. International Journal for Parasitology, 2009, 39, 1425-1439.	3.1	12
219	Tricks in Plasmodium's molecular repertoire – Escaping 3′UTR excision-based conditional silencing of the chloroquine resistance transporter gene. International Journal for Parasitology, 2012, 42, 969-974.	3.1	12
220	Evidence for Pyronaridine as a Highly Effective Partner Drug for Treatment of Artemisinin-Resistant Malaria in a Rodent Model. Antimicrobial Agents and Chemotherapy, 2014, 58, 183-195.	3.2	11
221	Identification and Profiling of a Novel Diazaspiro[3.4]octane Chemical Series Active against Multiple Stages of the Human Malaria Parasite <i>Plasmodium falciparum</i> and Optimization Efforts. Journal of Medicinal Chemistry, 2021, 64, 2291-2309.	6.4	11
222	Artemisinin resistance in Africa: How urgent is the threat?. Med, 2021, 2, 1287-1288.	4.4	11
223	In vitro and in vivo activity of frenolicin B against Plasmodium falciparum and P berghei. Journal of Antibiotics, 2011, 64, 799-801.	2.0	10
224	Perspectives: The missing pieces. Nature, 2012, 484, S22-S23.	27.8	10
225	The antimalarial efficacy and mechanism of resistance of the novel chemotype DDD01034957. Scientific Reports, 2021, 11, 1888.	3.3	10
226	Novel Antimalarial Tetrazoles and Amides Active against the Hemoglobin Degradation Pathway in <i>Plasmodium falciparum</i> . Journal of Medicinal Chemistry, 2021, 64, 2739-2761.	6.4	10
227	Arresting malaria parasite egress from infected red blood cells. Nature Chemical Biology, 2008, 4, 161-162.	8.0	9
228	The Longin Domain Regulates the Steady-State Dynamics of Sec22 in <i>Plasmodium falciparum</i> . Eukaryotic Cell, 2009, 8, 1330-1340.	3.4	9
229	Plasmodium falciparum LipB mutants display altered redox and carbon metabolism in asexual stages and cannot complete sporogony in Anopheles mosquitoes. International Journal for Parasitology, 2021, 51, 441-453.	3.1	9
230	Plasmodium falciparum:Ribosomal P2 Protein Gene Expression Is Independent of the Developmentally Regulated rRNAs. Experimental Parasitology, 1998, 89, 125-128.	1.2	8
231	Taking Charge: Feeding Malaria via Anion Channels. Cell, 2011, 145, 645-647.	28.9	8
232	Discrimination of Potent Inhibitors of <i>Toxoplasma gondii</i> Enoyl-Acyl Carrier Protein Reductase by a Thermal Shift Assay. Biochemistry, 2013, 52, 9155-9166.	2.5	8
233	Substrate and Inhibitor Specificity of the <i>Plasmodium berghei</i> Equilibrative Nucleoside Transporter Type 1. Molecular Pharmacology, 2016, 89, 678-685.	2.3	8
234	Comparative Analysis of Plasmodium falciparum Genotyping via SNP Detection, Microsatellite Profiling, and Whole-Genome Sequencing. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0116321.	3.2	8

#	Article	IF	CITATIONS
235	Mechanisms of Antimalarial Drug Action and Resistance. , 2014, , 427-461.		7
236	Structure-Based Screening of Plasmodium berghei Glutathione S-Transferase Identifies CB-27 as a Novel Antiplasmodial Compound. Frontiers in Pharmacology, 2020, 11, 246.	3.5	7
237	Turning the tide: targeting PfCRT to combat drug-resistant P. falciparum?. Nature Reviews Microbiology, 2020, 18, 261-262.	28.6	7
238	Recent insights into fatty acid acquisition and metabolism in malarial parasites. F1000 Biology Reports, 2010, 2, .	4.0	6
239	Plasmodium falciparum: Generation of a cDNA Library Enriched in Sporozoite-Specific Transcripts by Directional Tag Subtractive Hybridization. Experimental Parasitology, 2000, 95, 220-225.	1.2	5
240	Molecular Markers of Plasmodium Resistance to Antimalarials. , 2011, , 249-280.		5
241	3-Hydroxy-propanamidines, a New Class of Orally Active Antimalarials Targeting Plasmodium falciparum. Journal of Medicinal Chemistry, 2021, 64, 3035-3047.	6.4	5
242	Blocking Plasmodium Development in Mosquitoes: A Powerful New Approach for Expanding Malaria Control Efforts. American Journal of Tropical Medicine and Hygiene, 2019, 101, 734-735.	1.4	5
243	Construction of Plasmodium falciparumî» cDNA Libraries. , 2002, 72, 265-275.		3
244	Chemical diversity targets malaria. Nature, 2016, 538, 323-325.	27.8	3
245	Malaria parasite beats the heat. Nature Microbiology, 2021, 6, 1105-1107.	13.3	3
246	No Evidence of Decreased Artemisinin Efficacy in a High-Transmission Malaria Setting in Mali. American Journal of Tropical Medicine and Hygiene, 2012, 87, 16-17.	1.4	2
247	Pyronaridine-artesunate Shows Promise as an Effective and Well-tolerated Treatment for Artemisinin-resistant <i>Plasmodium falciparum</i> Malaria. Clinical Infectious Diseases, 2020, 70, 2196-2198.	5.8	2
248	Hemozoin Promotes Lung Inflammation via Host Epithelial Activation. MBio, 2021, 12, .	4.1	2
249	Production of Stage-Specific Plasmodium falciparum cDNA Libraries Using Subtractive Hybridization. , 2002, 72, 277-290.		1
250	A Breathprint for Malaria: New Opportunities for Noninterventional Diagnostics and Mosquito Traps?. Journal of Infectious Diseases, 2018, 217, 1512-1514.	4.0	1
251	Keystone Malaria Symposium 2022: a vibrant discussion of progress made and challenges ahead from drug discovery to treatment. Trends in Parasitology, 2022, 38, 711-718.	3.3	1
252	Effects of Iron Status and Iron Supplementation on Salmonella Typhimurium and Plasmodium Yoelii Infection In Mice. Blood, 2010, 116, 2052-2052.	1.4	0