Michael Td Wingate

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8391589/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma?. Precambrian Research, 2003, 122, 45-83.	1.2	719
2	Global record of 1600–700Ma Large Igneous Provinces (LIPs): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambrian Research, 2008, 160, 159-178.	1.2	425
3	Ion microprobe U–Pb ages for Neoproterozoic basaltic magmatism in south-central Australia and implications for the breakup of Rodinia. Precambrian Research, 1998, 87, 135-159.	1.2	347
4	Age and palaeomagnetism of the Mundine Well dyke swarm, Western Australia: implications for an Australia–Laurentia connection at 755 Ma. Precambrian Research, 2000, 100, 335-357.	1.2	321
5	Geochemistry of the 755Ma Mundine Well dyke swarm, northwestern Australia: Part of a Neoproterozoic mantle superplume beneath Rodinia?. Precambrian Research, 2006, 146, 1-15.	1.2	289
6	Late Mesozoic tectonics of Central Asia based on paleomagnetic evidence. Gondwana Research, 2010, 18, 400-419.	3.0	236
7	Early Neoproterozoic magmatism (1000–910 Ma) of the Zadinian and Mayumbian Groups (Bas-Congo): onset of Rodinia rifting at the western edge of the Congo craton. Precambrian Research, 2001, 110, 277-306.	1.2	227
8	Rodinia connections between Australia and Laurentia: no SWEAT, no AUSWUS?. Terra Nova, 2002, 14, 121-128.	0.9	218
9	Models of Rodinia assembly and fragmentation. Geological Society Special Publication, 2003, 206, 35-55.	0.8	205
10	Palaeozoic arc magmatism in the Central Asian Orogenic Belt of Kazakhstan: SHRIMP zircon ages and whole-rock Nd isotopic systematics. Journal of Asian Earth Sciences, 2008, 32, 118-130.	1.0	193
11	The 1375Ma "Kibaran event―in Central Africa: Prominent emplacement of bimodal magmatism under extensional regime. Precambrian Research, 2010, 180, 63-84.	1.2	191
12	Warakurna large igneous province: A new Mesoproterozoic large igneous province in west-central Australia. Geology, 2004, 32, 105.	2.0	169
13	High-Temperature Granite Magmatism, Crust–Mantle Interaction and the Mesoproterozoic Intracontinental Evolution of the Musgrave Province, Central Australia. Journal of Petrology, 2011, 52, 931-958.	1.1	147
14	A high-quality mid-Neoproterozoic paleomagnetic pole from South China, with implications for ice ages and the breakup configuration of Rodinia. Precambrian Research, 2000, 100, 313-334.	1.2	138
15	Crystal orientation effects during ion microprobe U–Pb analysis of baddeleyite. Chemical Geology, 2000, 168, 75-97.	1.4	131
16	Proterozoic mafic magmatism in Siberian craton: An overview and implications for paleocontinental reconstruction. Precambrian Research, 2010, 183, 660-668.	1.2	127
17	On the edge: U–Pb, Lu–Hf, and Sm–Nd data suggests reworking of the Yilgarn craton margin during formation of the Albany-Fraser Orogen. Precambrian Research, 2011, 187, 223-247. 	1.2	116
18	Transformation of an Archean craton margin during Proterozoic basin formation and magmatism: The Albanv–Fraser Orogen, Western Australia, Precambrian Research, 2015, 266, 440-466.	1.2	108

#	Article	IF	CITATIONS
19	Untying the Kibaran knot: A reassessment of Mesoproterozoic correlations in southern Africa based on SHRIMP U-Pb data from the Irumide belt. Geology, 2003, 31, 509.	2.0	102
20	Petrology, geochronology, and tectonic implications of <i>c</i> . 500 Ma metamorphic and igneous rocks along the northern margin of the Central Asian Orogen (Olkhon terrane, Lake Baikal, Siberia). Journal of the Geological Society, 2008, 165, 235-246.	0.9	101
21	Age, geochemistry, and tectonic significance of Neoproterozoic alkaline granitoids in the northwestern margin of the Gyeonggi massif, South Korea. Precambrian Research, 2003, 122, 297-310.	1.2	99
22	Constraints and deception in the isotopic record; the crustal evolution of the west Musgrave Province, central Australia. Gondwana Research, 2013, 23, 759-781.	3.0	96
23	Geochronology and paleomagnetism of mafic igneous rocks in the Olenek Uplift, northern Siberia: Implications for Mesoproterozoic supercontinents and paleogeography. Precambrian Research, 2009, 170, 256-266.	1.2	94
24	Zircon Ages from the Baydrag Block and the Bayankhongor Ophiolite Zone: Time Constraints on Late Neoproterozoic to Cambrian Subduction―and Accretionâ€Related Magmatism in Central Mongolia. Journal of Geology, 2009, 117, 377-397.	0.7	92
25	Long-lived, autochthonous development of the Archean Murchison Domain, and implications for Yilgarn Craton tectonics. Precambrian Research, 2013, 229, 49-92.	1.2	92
26	Two collisions, two sutures: Punctuated pre-1950Ma assembly of the West Australian Craton during the Ophthalmian and Glenburgh Orogenies. Precambrian Research, 2011, 189, 239-262.	1.2	88
27	The geochronological framework of the Irumide Belt: A prolonged crustal history along the margin of the Bangweulu Craton. Numerische Mathematik, 2009, 309, 132-187.	0.7	85
28	Evidence for Mesoarchean (â^1⁄43.2Ga) rifting of the Pilbara Craton: The missing link in an early Precambrian Wilson cycle. Precambrian Research, 2010, 177, 145-161.	1.2	82
29	Mafic intrusions in southwestern Siberia and implications for a Neoproterozoic connection with Laurentia. Precambrian Research, 2006, 147, 260-278.	1.2	81
30	Palaeomagnetic constraints on the position of the Kalahari craton in Rodinia. Precambrian Research, 2001, 110, 33-46.	1.2	78
31	The burning heart — The Proterozoic geology and geological evolution of the west Musgrave Region, central Australia. Gondwana Research, 2015, 27, 64-94.	3.0	77
32	Single-zircon geochronology and Nd isotopic systematics of Proterozoic high-grade rocks from the Mozambique belt of southern Tanzania (Masasi area): implications for Gondwana assembly. Journal of the Geological Society, 2003, 160, 745-757.	0.9	76
33	U-Pb and Pb-Pb zircon ages for metamorphic rocks in the Kaoko Belt of Northwestern Namibia: A Palaeo- to Mesoproterozoic basement reworked during the Pan-African orogeny. South African Journal of Geology, 2004, 107, 455-476.	0.6	74
34	The ca. 1380Ma Mashak igneous event of the Southern Urals. Lithos, 2013, 174, 109-124.	0.6	72
35	Proterozoic granulite formation driven by mafic magmatism: An example from the Fraser Range Metamorphics, Western Australia. Precambrian Research, 2014, 240, 1-21.	1.2	71
36	High-precision dating of the Kalkarindji large igneous province, Australia, and synchrony with the Early–Middle Cambrian (Stage 4–5) extinction. Geology, 2014, 42, 543-546.	2.0	70

#	Article	IF	CITATIONS
37	Adding pieces to the puzzle: episodic crustal growth and a new terrane in the northeast Yilgarn Craton, Western Australia. Australian Journal of Earth Sciences, 2012, 59, 603-623.	0.4	68
38	Age and significance of voluminous mafic–ultramafic magmatic events in the Murchison Domain, Yilgarn Craton. Australian Journal of Earth Sciences, 2010, 57, 597-614.	0.4	67
39	Ion microprobe baddeleyite and zircon ages for Late Archaean mafic dykes of the Pilbara Craton, Western Australia. Australian Journal of Earth Sciences, 1999, 46, 493-500.	0.4	66
40	lsotopic constraints on stratigraphy in the central and eastern Yilgarn Craton, Western Australia. Australian Journal of Earth Sciences, 2012, 59, 657-670.	0.4	65
41	SHRIMP zircon age for an Early Cambrian dolerite dyke: An intrusive phase of the Antrim Plateau Volcanics of northern Australia. Australian Journal of Earth Sciences, 2000, 47, 1029-1040.	0.4	64
42	SHRIMP baddeleyite age for the Fraser Dyke Swarm, southeast Yilgarn Craton, Western Australia. Australian Journal of Earth Sciences, 2000, 47, 309-313.	0.4	60
43	Geochemistry and geochronology of the c. 1585Ma Benagerie Volcanic Suite, southern Australia: Relationship to the Gawler Range Volcanics and implications for the petrogenesis of a Mesoproterozoic silicic large igneous province. Precambrian Research, 2012, 206-207, 17-35.	1.2	52
44	The Mesoproterozoic thermal evolution of the Musgrave Province in central Australia — Plume vs. the geological record. Gondwana Research, 2015, 27, 1419-1429.	3.0	52
45	Using in situ SHRIMP U-Pb Monazite and Xenotime Geochronology to Determine the Age of Orogenic Gold Mineralization: An Example from the Paulsens Mine, Southern Pilbara Craton. Economic Geology, 2017, 112, 1205-1230.	1.8	52
46	Paleomagnetism, geochronology and tectonic implications of the Cambrian-age Carion granite, Central Madagascar. Tectonophysics, 2001, 340, 1-21.	0.9	51
47	Zircon Lu–Hf isotopes and granite geochemistry of the Murchison Domain of the Yilgarn Craton: Evidence for reworking of Eoarchean crust during Meso-Neoarchean plume-driven magmatism. Lithos, 2012, 148, 112-127.	0.6	51
48	Grain size matters: Implications for element and isotopic mobility in titanite. Precambrian Research, 2016, 278, 283-302.	1.2	51
49	Devil in the detail; The 1150–1000Ma magmatic and structural evolution of the Ngaanyatjarra Rift, west Musgrave Province, Central Australia. Precambrian Research, 2010, 183, 572-588.	1.2	50
50	SHRIMP zircon dating and Nd isotopic systematics of Palaeoproterozoic migmatitic orthogneisses in the Epupa Metamorphic Complex of northwestern Namibia. Precambrian Research, 2010, 183, 50-69.	1.2	50
51	Age and paleomagnetism of the 1210Ma Gnowangerup–Fraser dyke swarm, Western Australia, and implications for late Mesoproterozoic paleogeography. Precambrian Research, 2014, 246, 1-15.	1.2	50
52	Late Mesoproterozoic (ca1.2 Ga) palaeomagnetism of the Albany-Fraser orogen: no pre-Rodinia Australia-Laurentia connection. Geophysical Journal International, 2003, 155, F6-F11.	1.0	49
53	Timing and Evolution of Cretaceous Island Arc Magmatism in Central Cuba: Implications for the History of Arc Systems in the Northwestern Caribbean. Journal of Geology, 2011, 119, 619-640.	0.7	47
54	Genesis of the 1.21 Ga Marnda Moorn large igneous province by plume–lithosphere interaction. Precambrian Research, 2014, 241, 85-103.	1.2	47

#	Article	IF	CITATIONS
55	SHRIMP baddeleyite and zircon ages for an Umkondo dolerite sill, Nyanga Mountains, Eastern Zimbabwe. South African Journal of Geology, 2001, 104, 13-22.	0.6	44
56	A one-billion-year gap in the Precambrian history of the southern Siberian Craton and the problem of the Transproterozoic supercontinent. Numerische Mathematik, 2010, 310, 812-825.	0.7	43
57	Spatio-temporal constraints on lithospheric development in the southwest–central Yilgarn Craton, Western Australia. Australian Journal of Earth Sciences, 2012, 59, 625-656.	0.4	43
58	The affinity of Archean crust on the Yilgarn—Albany–Fraser Orogen boundary: Implications for gold mineralisation in the Tropicana Zone. Precambrian Research, 2015, 266, 260-281.	1.2	43
59	The 880–864Ma granites of the Yenisey Ridge, western Siberian margin: Geochemistry, SHRIMP geochronology, and tectonic implications. Precambrian Research, 2007, 154, 175-191.	1.2	41
60	Early Palaeozoic orogenic collapse and voluminous late-tectonic magmatism in Dronning Maud Land and Mozambique: insights into the partially delaminated orogenic root of the East African–Antarctic Orogen?. Geological Society Special Publication, 2008, 308, 69-90.	0.8	41
61	A review of volcanic-hosted massive sulfide (VHMS) mineralization in the Archaean Yilgarn Craton, Western Australia: Tectonic, stratigraphic and geochemical associations. Precambrian Research, 2015, 260, 113-135.	1.2	41
62	Revised geochronology of magmatism in the western Capricorn Orogen at 1805-1785 Ma: diachroneity of the Pilbara-Yilgarn collision. Australian Journal of Earth Sciences, 2003, 50, 853-864.	0.4	38
63	In situ SHRIMP U–Pb dating of monazite integrated with petrology and textures: Does bulk composition control whether monazite forms in low-Ca pelitic rocks during amphibolite facies metamorphism?. Geochimica Et Cosmochimica Acta, 2006, 70, 3040-3058.	1.6	36
64	Palaeomagnetic results from the Lancer 1 stratigraphic drillhole, Officer Basin, Western Australia, and implications for Rodinia reconstructions. Australian Journal of Earth Sciences, 2007, 54, 561-572.	0.4	36
65	Microstructural dynamics of central uplifts: Reidite offset by zircon twins at the Woodleigh impact structure, Australia. Geology, 2018, 46, 983-986.	2.0	33
66	A-type leucogranite magmatism in the evolution of continental crust on the western margin of the Siberian craton. Russian Geology and Geophysics, 2007, 48, 3-16.	0.3	32
67	Structure and timing of Neoarchean gold mineralization in the Southern Cross district (Yilgarn) Tj ETQq1 1 0.784 Structural Geology, 2014, 67, 205-221.	1314 rgBT 1.0	/Overlock 10 32
68	Neoproterozoic tectonic structure of the Yenisei Ridge and formation of the western margin of the Siberian craton based on new geological, paleomagnetic, and geochronological data. Russian Geology and Geophysics, 2016, 57, 47-68.	0.3	32
69	Ion microprobe U–Pb zircon geochronology of a late tectonic granitic–gabbroic rock complex within the Hercynian Iberian belt. Geological Magazine, 2007, 144, 157-177.	0.9	31
70	Proterozoic basic magmatism of the Siberian Craton: Main stages and their geodynamic interpretation. Geotectonics, 2012, 46, 273-284.	0.2	31
71	Tracking sediment dispersal during orogenesis: A zircon age and Hf isotope study from the western Amadeus Basin, Australia. Gondwana Research, 2016, 37, 324-347.	3.0	31
72	A Sequence of Pan-African and Hercynian Events Recorded in Zircons from an Orthogneiss from the Hercynian Belt of Western Central Iberia–an Ion Microprobe U-Pb Study. Journal of Petrology, 2004, 45, 1613-1629.	1.1	30

#	Article	IF	CITATIONS
73	Ion microprobe UPb zircon and baddeleyite ages for the Great Dyke and its satellite dykes, Zimbabwe. South African Journal of Geology, 2000, 103, 74-80.	0.6	29
74	Not-so-suspect terrane: Constraints on the crustal evolution of the Rudall Province. Precambrian Research, 2013, 235, 131-149.	1.2	28
75	The petrogenesis of sodic granites in the Niujuanzi area and constraints on the Paleozoic tectonic evolution of the Beishan region, NW China. Lithos, 2016, 256-257, 250-268.	0.6	28
76	Buried but preserved: The Proterozoic Arubiddy Ophiolite, Madura Province, Western Australia. Precambrian Research, 2018, 317, 137-158.	1.2	27
77	Incremental pluton emplacement during inclined transpression. Tectonophysics, 2014, 623, 100-122.	0.9	26
78	Radiogenic heating and cratonâ€margin plate stresses as drivers for intraplate orogeny. Journal of Metamorphic Geology, 2017, 35, 631-661.	1.6	25
79	Reply to the comment: Mantle plume-, but not arc-related Neoproterozoic magmatism in South China. Precambrian Research, 2004, 132, 405-407.	1.2	24
80	A new Paleoproterozoic tectonic history of the eastern Capricorn Orogen, Western Australia, revealed by U–Pb zircon dating of micro-tuffs. Precambrian Research, 2016, 286, 1-19.	1.2	24
81	Early Proterozoic postcollisional granitoids of the Biryusa block of the Siberian craton. Russian Geology and Geophysics, 2014, 55, 812-823.	0.3	22
82	Petrogenesis of the A-type, Mesoproterozoic Intra-caldera Rheomorphic Kathleen Ignimbrite and Comagmatic Rowland Suite Intrusions, West Musgrave Province, Central Australia: Products of Extreme Fractional Crystallization in a Failed Rift Setting. Journal of Petrology, 2015, 56, 493-525.	1.1	22
83	Geology and age of the Glikson impact structure, Western Australia. Australian Journal of Earth Sciences, 2005, 52, 641-651.	0.4	21
84	When will it end? Long-lived intracontinental reactivation in central Australia. Geoscience Frontiers, 2019, 10, 149-164.	4.3	21
85	Early Ordovician CA-IDTIMS U–Pb zircon dating and conodont biostratigraphy, Canning Basin, Western Australia. Australian Journal of Earth Sciences, 2018, 65, 61-73.	0.4	20
86	Evolution of the Queen Charlotte Basin; further paleomagnetic evidence of Tertiary extension and tilting. Tectonophysics, 2000, 326, 1-22.	0.9	18
87	A New Shape for Rodinia. Gondwana Research, 2001, 4, 736-737.	3.0	18
88	Zircon geochronology of late Archean komatiitic sills and their felsic country rocks, south-central Zimbabwe: A revised age for the Reliance komatiitic event and its implications. Precambrian Research, 2013, 229, 105-124.	1.2	18
89	Palaeomagnetic constraints on the Proterozoic tectonic evolution of Australia. Geological Society Special Publication, 2003, 206, 77-91.	0.8	17
90	Paleomagnetism of the 765 Ma Luakela volcanics in Northwest Zambia and implications for Neoproterozoic positions of the Congo Craton. Numerische Mathematik, 2010, 310, 1333-1344.	0.7	17

#	Article	IF	CITATIONS
91	Extension in high-grade terranes of the southern Omineca Belt, British Columbia: Evidence from paleomagnetism. Tectonics, 1994, 13, 686-711.	1.3	15
92	Zircon geochronology and partial structural re-interpretation of the late Archaean Mashaba Igneous Complex, south-central Zimbabwe. South African Journal of Geology, 2007, 110, 585-596.	0.6	15
93	Age and composition of Neoproterozoic diabase dykes in North Altyn Tagh, northwest China: implications for Rodinia break-up. International Geology Review, 2023, 65, 1000-1016.	1.1	14
94	Analysis of the Ragged Basin, Western Australia: Insights into syn-orogenic basin evolution within the Albany–Fraser Orogen. Precambrian Research, 2015, 261, 166-187.	1.2	13
95	Piggy-back Supervolcanoes—Long-Lived, Voluminous, Juvenile Rhyolite Volcanism in Mesoproterozoic Central Australia. Journal of Petrology, 2015, 56, 735-763.	1.1	13
96	The age distribution of detrital zircons in quartzites from the Toodyay-Lake Grace Domain, Western Australia: Implications for the early evolution of the Yilgarn Craton. Numerische Mathematik, 2010, 310, 1115-1135.	0.7	12
97	Provenance of the Ordovician–lower Silurian Tumblagooda Sandstone, Western Australia. Australian Journal of Earth Sciences, 2015, 62, 817-830.	0.4	11
98	Uplift of the Lüliang Mountains at ca. 5.7†Ma: Insights from provenance of the Neogene eolian red clay of the eastern Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 502, 63-73.	1.0	11
99	New data on the age and protolith of granulites of the Olkhon collisional system (Baikal Region). Doklady Earth Sciences, 2008, 419, 417-422.	0.2	10
100	Provenance of Neogene eolian red clay in the Altun region of western China—Insights from U Pb detrital zircon age data. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459, 488-494.	1.0	10
101	The evolution of a Precambrian arc-related granulite facies gold deposit: Evidence from the Glenburgh deposit, Western Australia. Precambrian Research, 2017, 290, 63-85.	1.2	10
102	Paleomagnetic pole from the Yilgarn B (YB) dykes of Western Australia: no longer relevant to Rodinia reconstructions. Earth and Planetary Science Letters, 2001, 187, 39-53.	1.8	9
103	The Cambrian Carion Granite of Madagascar: A Case of Late Pan-African Shoshonitic Magmatism. Gondwana Research, 2001, 4, 746-747.	3.0	7
104	Geochronological constraints on nickel metallogeny in the Lake Johnston belt, Southern Cross Domain. Australian Journal of Earth Sciences, 2014, 61, 143-157.	0.4	7
105	Detrital zircon geochronology of the Speewah Group, Kimberley region, Western Australia: evidence for intracratonic development of the Paleoproterozoic Speewah Basin. Australian Journal of Earth Sciences, 2017, 64, 419-434.	0.4	7
106	Cratonisation of Archaean continental crust: Insights from U–Pb zircon geochronology and geochemistry of granitic rocks in the Narryer Terrane, northwest Yilgarn Craton. Precambrian Research, 2022, 372, 106609.	1.2	7
107	Using the isotope dating of endocontact hybrid rocks for the age determination of mafic rocks (southern Siberian craton). Russian Geology and Geophysics, 2013, 54, 1340-1351.	0.3	6
108	Evidence of Hadean to Paleoarchean Crust in the Youanmi and South West Terranes, and Eastern Goldfields Superterrane of the Yilgarn Craton, Western Australia. , 2019, , 279-292.		6

#	Article	IF	CITATIONS
109	Late Neogene aridification and wind patterns in the Asian interior: Insight from the grain-size of eolian deposits in Altun Shan, northern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511, 532-540.	1.0	5
110	Proterozoic Dyke Swarms of the Siberian Craton and Their Geodynamic Implications. Acta Geologica Sinica, 2016, 90, 6-7.	0.8	4
111	Updated Digital Map of Mafic Dyke Swarms and Large Igneous Provinces in Western Australia. Acta Geologica Sinica, 2016, 90, 13-14.	0.8	1
112	Age and Geochemical Characteristics of Major Mafic Dyke Swarms in the Southern Part of the Siberian Craton. Acta Geologica Sinica, 2016, 90, 125-126.	0.8	0
113	Microstructural dynamics of central uplifts: Reidite offset by zircon twins at the Woodleigh impact structure, Australia: REPLY. Geology, 2019, 47, e466-e466.	2.0	0