Kenneth John McDowall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8391490/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Natural Product Reports, 2011, 28, 1311.	10.3	390
2	Structure of Escherichia coli RNase E catalytic domain and implications for RNA turnover. Nature, 2005, 437, 1187-1191.	27.8	259
3	Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Natural Product Reports, 2018, 35, 575-604.	10.3	203
4	The N-terminal Domain of therneGene Product has RNase E Activity and is Non-overlapping with the Arginine-rich RNA-binding Site. Journal of Molecular Biology, 1996, 255, 349-355.	4.2	154
5	Site-specific RNase E cleavage of oligonucleotides and inhibition by stem–loops. Nature, 1995, 374, 287-290.	27.8	145
6	RNase E: still a wonderfully mysterious enzyme. Molecular Microbiology, 1997, 23, 1099-1106.	2.5	137
7	Chapter 3 Endonucleolytic Initiation of mRNA Decay in Escherichia coli. Progress in Molecular Biology and Translational Science, 2009, 85, 91-135.	1.7	137
8	The CafA Protein Required for the 5′-Maturation of 16 S rRNA Is a 5′-End-dependent Ribonuclease That Has Context-dependent Broad Sequence Specificity. Journal of Biological Chemistry, 2000, 275, 8726-8732.	3.4	133
9	Transcriptional activation of the pathway-specific regulator of the actinorhodin biosynthetic genes in Streptomyces coelicolor. Molecular Microbiology, 2005, 58, 131-150.	2.5	132
10	The ams-1 and rne-3071 temperature-sensitive mutations in the ams gene are in close proximity to each other and cause substitutions within a domain that resembles a product of the Escherichia coli mre locus. Journal of Bacteriology, 1993, 175, 4245-4249.	2.2	116
11	Direct entry by RNase E is a major pathway for the degradation and processing of RNA in <i>Escherichia coli</i> . Nucleic Acids Research, 2014, 42, 11733-11751.	14.5	89
12	The permease gene <i>nagE2</i> is the key to <i>N</i> â€acetylglucosamine sensing and utilization in <i>Streptomyces coelicolor</i> and is subject to multiâ€level control. Molecular Microbiology, 2010, 75, 1133-1144.	2.5	73
13	Characterization of an oxytetracycline-resistance gene, otrA, of Streptomyces rimosus. Molecular Microbiology, 1991, 5, 2923-2933.	2.5	72
14	Rapid cleavage of RNA by RNase E in the absence of 5′ monophosphate stimulation. Molecular Microbiology, 2010, 76, 590-604.	2.5	70
15	Quaternary Structure and Catalytic Activity of the Escherichia coli Ribonuclease E Amino-Terminal Catalytic Domain. Biochemistry, 2003, 42, 13848-13855.	2.5	66
16	Alginases from Azotobacter species. Journal of General Microbiology, 1992, 138, 2465-2471.	2.3	55
17	Dietary zinc oxide affects the expression of genes associated with inflammation: Transcriptome analysis in piglets challenged with ETEC K88. Veterinary Immunology and Immunopathology, 2010, 137, 120-129.	1.2	55
18	Sensing of 5′ monophosphate by <i>Escherichia coli</i> RNase G can significantly enhance association with RNA and stimulate the decay of functional mRNA transcripts <i>in vivo</i> . Molecular Microbiology, 2008, 67, 102-115.	2.5	54

Kenneth John McDowall

#	Article	IF	CITATIONS
19	Enhanced cleavage of RNA mediated by an interaction between substrates and the arginine-rich domain of E. coli ribonuclease E 1 1Edited by I. B. Holland. Journal of Molecular Biology, 2000, 301, 257-264.	4.2	52
20	Translational activation by the noncoding RNA DsrA involves alternative RNase III processing in the <i>rpoS</i> 5′-leader. Rna, 2008, 14, 454-459.	3.5	51
21	A comparison of key aspects of gene regulation inStreptomyces coelicolorandEscherichia coliusing nucleotideâ€resolution transcription maps produced in parallel by global and differentialRNAsequencing. Molecular Microbiology, 2014, 94, 963-987.	2.5	48
22	"Zn-Linkâ€ ! A Metal-Sharing Interface that Organizes the Quaternary Structure and Catalytic Site of the Endoribonuclease, RNase Eâ€. Biochemistry, 2005, 44, 4667-4675.	2.5	47
23	Determination of the Catalytic Parameters of the N-terminal Half of Escherichia coli Ribonuclease E and the Identification of Critical Functional Groups in RNA Substrates. Journal of Biological Chemistry, 2003, 278, 44001-44008.	3.4	44
24	Phosphate Control of Oxytetracycline Production by <i>Streptomyces rimosus</i> Is at the Level of Transcription from Promoters Overlapped by Tandem Repeats Similar to Those of the DNA-Binding Sites of the OmpR Family. Journal of Bacteriology, 1999, 181, 3025-3032.	2.2	43
25	Transcript analysis reveals an extended regulon and the importance of protein–protein co-operativity for the Escherichia coli methionine repressor. Biochemical Journal, 2006, 396, 227-234.	3.7	43
26	Adjacent single-stranded regions mediate processing of tRNA precursors by RNase E direct entry. Nucleic Acids Research, 2014, 42, 4577-4589.	14.5	32
27	Streptomycin production by Streptomyces griseus can be modulated by a mechanism not associated with change in the adpA component of the A-factor cascade. Biotechnology Letters, 2006, 29, 57-64.	2.2	31
28	Binding of a biosynthetic intermediate to <scp>AtrA</scp> modulates the production of lidamycin by <scp><i>S</i></scp> <i>treptomyces globisporus</i> . Molecular Microbiology, 2015, 96, 1257-1271.	2.5	28
29	The First Small-Molecule Inhibitors of Members of the Ribonuclease E Family. Scientific Reports, 2015, 5, 8028.	3.3	25
30	The Identification of Nucleic Acid-interacting Proteins Using a Simple Proteomics-based Approach That Directly Incorporates the Electrophoretic Mobility Shift Assay. Molecular and Cellular Proteomics, 2006, 5, 1697-1702.	3.8	23
31	A combination of improved differential and global RNA-seq reveals pervasive transcription initiation and events in all stages of the life-cycle of functional RNAs in Propionibacterium acnes, a major contributor to wide-spread human disease. BMC Genomics, 2013, 14, 620.	2.8	20
32	Differential expression and extent of fungal/plant and fungal/bacterial chitinases of Aspergillus fumigatus. Archives of Microbiology, 2005, 184, 78-81.	2.2	19
33	Chapter 12 Identifying and Characterizing Substrates of the RNase E/G Family of Enzymes. Methods in Enzymology, 2008, 447, 215-241.	1.0	18
34	A stereodivergent, two-directional synthesis of stereoisomeric C-linked disaccharide mimetics. Organic and Biomolecular Chemistry, 2003, 1, 338-349.	2.8	15
35	Transcriptional analysis of the cell division-related ssg genes in Streptomyces coelicolor reveals direct control of ssgR by AtrA. Antonie Van Leeuwenhoek, 2015, 108, 201-213.	1.7	14
36	Molecular Genetics of Oxytetracycline Production by Streptomyces rimosus. , 1991, , 105-116.		12

#	Article	IF	CITATIONS
37	Expanding the Use of Zymography by the Chemical Linkage of Small, Defined Substrates to the Gel Matrix. Genome Research, 2003, 13, 1961-1965.	5.5	12
38	The sequence of sites recognised by a member of the RNase E/G family can control the maximal rate of cleavage, while a 5â€2-monophosphorylated end appears to function cooperatively in mediating RNA binding. Biochemical and Biophysical Research Communications, 2010, 391, 879-883.	2.1	11
39	Two-dimensional gel electrophoresis for identifying proteins that bind DNA or RNA. Nature Protocols, 2007, 2, 1839-1848.	12.0	9
40	An Improved Binary Vector and <i>Escherichia coli</i> Strain for <i>Agrobacterium tumefaciens</i> -Mediated Plant Transformation. G3: Genes, Genomes, Genetics, 2016, 6, 2195-2201.	1.8	7
41	Protein-conjugated microbubbles for the selective targeting of S. aureus biofilms. Biofilm, 2022, 4, 100074.	3.8	5
42	Cross Inoculation of Rumen Fluid to Improve Dry Matter Disappearance and Its Effect on Bacterial Composition Using an in vitro Batch Culture Model. Frontiers in Microbiology, 2020, 11, 531404.	3.5	2