
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8391387/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dehydroisohispanolone as a Promising NLRP3 Inhibitor Agent: Bioevaluation and Molecular Docking. Pharmaceuticals, 2022, 15, 825.	1.7	5
2	Current status of terpenoids as inflammasome inhibitors. Biochemical Pharmacology, 2020, 172, 113739.	2.0	18
3	Dehydrohispanolone Derivatives Attenuate the Inflammatory Response through the Modulation of Inflammasome Activation. Journal of Natural Products, 2020, 83, 2155-2164.	1.5	4
4	NFATc3 controls tumour growth by regulating proliferation and migration of human astroglioma cells. Scientific Reports, 2019, 9, 9361.	1.6	16
5	α-Hispanolol Induces Apoptosis and Suppresses Migration and Invasion of Glioblastoma Cells Likely via Downregulation of MMP-2/9 Expression and p38MAPK Attenuation. Frontiers in Pharmacology, 2019, 10, 935.	1.6	11
6	Metal Complexes of Natural Product Like-compounds with Antitumor Activity. Anti-Cancer Agents in Medicinal Chemistry, 2019, 19, 48-65.	0.9	15
7	Semisynthesis and Inhibitory Effects of Solidagenone Derivatives on TLR-Mediated Inflammatory Responses. Molecules, 2018, 23, 3197.	1.7	15
8	A hispanolone-derived diterpenoid inhibits M2-Macrophage polarization in vitro via JAK/STAT and attenuates chitin induced inflammation in vivo. Biochemical Pharmacology, 2018, 154, 373-383.	2.0	32
9	Screening Assays to Characterize Novel Endothelial Regulators Involved in the Inflammatory Response. Journal of Visualized Experiments, 2017, , .	0.2	0
10	8,9-Dehydrohispanolone-15,16-lactol diterpene prevents LPS-triggered inflammatory responses by inhibiting endothelial activation. Biochemical Journal, 2016, 473, 2061-2071.	1.7	7
11	Tumor suppressor ARF regulates tissue microenvironment and tumor growth through modulation of macrophage polarization. Oncotarget, 2016, 7, 66835-66850.	0.8	10
12	Critical role of p38 MAPK in ILâ€4â€induced alternative activation of peritoneal macrophages. European Journal of Immunology, 2015, 45, 273-286.	1.6	68
13	Chemokines and relapses in childhood acute lymphoblastic leukemia: A role in migration and in resistance to antileukemic drugs. Blood Cells, Molecules, and Diseases, 2015, 55, 220-227.	0.6	39
14	α-Hispanolol sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis via death receptor up-regulation. Toxicology and Applied Pharmacology, 2015, 286, 168-177.	1.3	9
15	Anti-inflammatory activity and phenolic profile of propolis from two locations in Región Metropolitana de Santiago, Chile. Journal of Ethnopharmacology, 2015, 168, 37-44.	2.0	50
16	Biological evaluation of angular disubstituted naphthoimidazoles as anti-inflammatory agents. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4210-4213.	1.0	3
17	Critical role of the death receptor pathway in the antitumoral effects induced by hispanolone derivatives. Oncogene, 2013, 32, 259-268.	2.6	15
18	Synthesis and cytotoxic activity of metallic complexes of lawsone. Bioorganic and Medicinal Chemistry, 2013, 21, 2471-2477.	1.4	44

#	Article	IF	CITATIONS
19	IL10 Released by a New Inflammation-regulated Lentiviral System Efficiently Attenuates Zymosan-induced Arthritis. Molecular Therapy, 2013, 21, 119-130.	3.7	31
20	Macrophages, Inflammation, and Tumor Suppressors: ARF, a New Player in the Game. Mediators of Inflammation, 2012, 2012, 1-11.	1.4	55
21	Tumor suppressor ARF. Oncolmmunology, 2012, 1, 946-947.	2.1	3
22	Role of the tumor suppressor ARF in macrophage polarization. Oncolmmunology, 2012, 1, 1227-1238.	2.1	20
23	Labdanolic acid methyl ester (LAME) exerts anti-inflammatory effects through inhibition of TAK-1 activation. Toxicology and Applied Pharmacology, 2012, 258, 109-117.	1.3	16
24	Synthesis and anti-inflammatory activity of ent-kaurene derivatives. European Journal of Medicinal Chemistry, 2011, 46, 1291-1305.	2.6	22
25	The Tumor Suppressor ARF Regulates Innate Immune Responses in Mice. Journal of Immunology, 2011, 187, 6527-6538.	0.4	23
26	Synthesis and induction of apoptosis signaling pathway of ent-kaurane derivatives. Bioorganic and Medicinal Chemistry, 2010, 18, 1724-1735.	1.4	47
27	Evaluation of labdane derivatives as potential anti-inflammatory agents. European Journal of Medicinal Chemistry, 2010, 45, 3155-3161.	2.6	21
28	ILK mediates LPS-induced vascular adhesion receptor expression and subsequent leucocyte trans-endothelial migrationâ€. Cardiovascular Research, 2010, 86, 283-292.	1.8	41
29	Mice Lacking Thyroid Hormone Receptor \hat{I}^2 Show Enhanced Apoptosis and Delayed Liver Commitment for Proliferation after Partial Hepatectomy. PLoS ONE, 2010, 5, e8710.	1.1	37
30	Molecular Basis of the Anti-Inflammatory Effects of Terpenoids. Inflammation and Allergy: Drug Targets, 2009, 8, 28-39.	1.8	122
31	Supression of inflammatory responses by labdane-type diterpenoids. Toxicology and Applied Pharmacology, 2008, 228, 179-189.	1.3	39
32	Modulation of inflammatory responses by diterpene acids from Helianthus annuus L Biochemical and Biophysical Research Communications, 2008, 369, 761-766.	1.0	31
33	Selective Activation of Liver X Receptors by Acanthoic Acid-Related Diterpenes. Molecular Pharmacology, 2007, 71, 1545-1553.	1.0	36
34	Differential sensitivity to apoptosis among the cells that contribute to the atherosclerotic disease. Biochemical and Biophysical Research Communications, 2007, 363, 444-450.	1.0	9
35	Kaurane diterpenes protect against apoptosis and inhibition of phagocytosis in activated macrophages. British Journal of Pharmacology, 2007, 152, 249-255.	2.7	31
36	Animal models for the study of liver regeneration: role of nitric oxide and prostaglandins. Frontiers in Bioscience - Landmark, 2007, 12, 13.	3.0	17

#	Article	IF	CITATIONS
37	Cyclooxygenase 2: understanding the pathophysiological role through genetically altered mouse models. Frontiers in Bioscience - Landmark, 2006, 11, 2876.	3.0	20
38	Specific Contribution of p19ARF to Nitric Oxide-Dependent Apoptosis. Journal of Immunology, 2006, 177, 3327-3336.	0.4	42
39	Nitric oxide and cell viability in inflammatory cells: a role for NO in macrophage function and fate. Toxicology, 2005, 208, 249-258.	2.0	305
40	A New Family of Synthetic Diterpenes that Regulates Cytokine Synthesis by Inhibiting lκBα Phosphorylation. ChemBioChem, 2005, 6, 133-144.	1.3	12
41	Assessment of a dual regulatory role for NO in liver regeneration after partial hepatectomy: protection against apoptosis and retardation of hepatocyte proliferation. FASEB Journal, 2005, 19, 995-997.	0.2	29
42	Nitric Oxide and Cell Signaling: In Vivo Evaluation of NOâ€Dependent Apoptosis by MRI and Not NMR Techniques. Methods in Enzymology, 2005, 396, 579-584.	0.4	1
43	Simultaneous abrogation of NOS-2 and COX-2 activities is lethal in partially hepatectomised mice. Journal of Hepatology, 2004, 40, 926-933.	1.8	21
44	Ammonia prevents glutamate-induced but not low K+-induced apoptosis in cerebellar neurons in culture. Neuroscience, 2003, 117, 899-907.	1.1	16
45	Sustained Nitric Oxide Delivery Delays Nitric Oxide-Dependent Apoptosis in Macrophages: Contribution to the Physiological Function of Activated Macrophages. Journal of Immunology, 2003, 171, 6059-6064.	0.4	22
46	Nitric oxide and resolution of inflammation. Methods in Enzymology, 2002, 359, 459-465.	0.4	17
47	Nitric oxide in liver inflammation and regeneration. Metabolic Brain Disease, 2002, 17, 325-334.	1.4	21
48	Inhibition of the Nuclear Factor κB (NF-κB) Pathway by Tetracyclic Kaurene Diterpenes in Macrophages. Journal of Biological Chemistry, 2001, 276, 15854-15860.	1.6	105
49	Intracellular water motion decreases in apoptotic macrophages after caspase activation. Cell Death and Differentiation, 2001, 8, 1022-1028.	5.0	34
50	Peroxisome Proliferator-activated Receptor-Î ³ -independent Inhibition of Macrophage Activation by the Non-thiazolidinedione Agonist L-796,449. Journal of Biological Chemistry, 2001, 276, 34082-34088.	1.6	46
51	Protection by nitric oxide against liver inflammatory injury in animals carrying a nitric oxide synthaseâ€2 transgene. FASEB Journal, 2001, 15, 583-585.	0.2	44
52	Anti-inflammatory action of type I interferons deduced from mice expressing interferon β. Gene Therapy, 2000, 7, 817-825.	2.3	21
53	Contribution of Cyclopentenone Prostaglandins to the Resolution of Inflammation Through the Potentiation of Apoptosis in Activated Macrophages. Journal of Immunology, 2000, 165, 6525-6531.	0.4	114
54	Inhibition of IκB Kinase and IκB Phosphorylation by 15-Deoxy-Δ 12,14 -Prostaglandin J 2 in Activated Murine Macrophages. Molecular and Cellular Biology, 2000, 20, 1692-1698.	1.1	262

#	Article	IF	CITATIONS
55	Potentiation by Nitric Oxide of Cyclosporin A and FK506-Induced Apoptosis in Renal Proximal Tubule Cells. Journal of the American Society of Nephrology: JASN, 2000, 11, 2315-2323.	3.0	68
56	Nitric oxide induces tyrosine nitration and release of cytochrome c preceding an increase of mitochondrial transmembrane potential in macrophages. FASEB Journal, 1999, 13, 2311-2317.	0.2	135
57	Protective effect of cyclosporin A and FK506 from nitric oxide-dependent apoptosis in activated macrophages. British Journal of Pharmacology, 1999, 126, 1139-1146.	2.7	67
58	Mechanisms of Nitric Oxide-Dependent Apoptosis: Involvement of Mitochondrial Mediators. Cellular Signalling, 1999, 11, 239-244.	1.7	120
59	Interferon-α/β Inhibits the Apoptosis Induced by Lipopolysaccharide and Interferon-γ in Murine Peritoneal Macrophages. Journal of Interferon and Cytokine Research, 1998, 18, 461-467.	0.5	15
60	Suppression of HIV-1 infection in linomide-treated SCID-hu-PBL mice. Aids, 1998, 12, 865-872.	1.0	9
61	Nitric oxide induces apoptosis via triggering mitochondrial permeability transition. FEBS Letters, 1997, 410, 373-377.	1.3	220
62	Involvement of nitric oxide synthesis in hepatic perturbations induced in rats by a necrogenic dose of thioacetamide. British Journal of Pharmacology, 1997, 121, 820-826.	2.7	24
63	Nitric oxide is released in regenerating liver after partial hepatectomy. Hepatology, 1995, 21, 776-786.	3.6	123
64	Bacterial Lipopeptides Induce Nitric Oxide Synthase and Promote Apoptosis through Nitric Oxide-independent Pathways in Rat Macrophages. Journal of Biological Chemistry, 1995, 270, 6017-6021.	1.6	84
65	Splenic B lymphocyte programmed cell death is prevented by nitric oxide release through mechanisms involving sustained Bcl-2 levels Journal of Clinical Investigation, 1995, 95, 1884-1890.	3.9	299
66	Induction of Nitric Oxide Synthase after Protein Kinase C Activation by Phorbol Esters. , 1994, , 51-64.		0
67	Phorbol esters induce nitric oxide synthase and increase arginine influx in cultured peritoneal macrophages. FEBS Letters, 1993, 320, 135-139.	1.3	98