Gholam Bagheri Marandi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8391338/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of rice husk biochar application on the properties of alkaline soil and lentil growth. Plant, Soil and Environment, 2015, 61, 475-482.	2.2	106
2	Poly(AA-co-VPA) hydrogel cross-linked with N-maleyl chitosan as dye adsorbent: Isotherms, kinetics and thermodynamic investigation. International Journal of Biological Macromolecules, 2018, 117, 152-166.	7.5	97
3	Collagen-g-poly(Sodium Acrylate-co-Acrylamide)/sodium montmorillonite superabsorbent nanocomposites: synthesis and swelling behavior. Journal of Polymer Research, 2011, 18, 1487-1499.	2.4	69
4	Synthesis of poly(acrylamide-co-itaconic acid)/MWCNTs superabsorbent hydrogel nanocomposite by ultrasound-assisted technique: Swelling behavior and Pb (II) adsorption capacity. Ultrasonics Sonochemistry, 2018, 49, 1-12.	8.2	66
5	Synthesis of porous poly(acrylamide) hydrogels using calcium carbonate and its application for slow release of potassium nitrate. EXPRESS Polymer Letters, 2009, 3, 279-285.	2.1	49
6	pH sensitivity and swelling behavior of partially hydrolyzed formaldehyde•rosslinked poly(acrylamide) superabsorbent hydrogels. Journal of Applied Polymer Science, 2008, 109, 1083-1092.	2.6	44
7	Fast and Efficient Removal of Cationic Dyes From Aqueous Solution by Collagen-Based Hydrogel Nanocomposites. Polymer-Plastics Technology and Engineering, 2013, 52, 310-318.	1.9	42
8	Adsorption of Methylene Blue, Brilliant Green and Rhodamine B from Aqueous Solution Using Collagen-g-p(AA-co-NVP)/Fe3O4@SiO2 Nanocomposite Hydrogel. Journal of Polymers and the Environment, 2019, 27, 581-599.	5.0	42
9	Preparation of magnetic double network nanocomposite hydrogel for adsorption of phenol and p-nitrophenol from aqueous solution. Journal of Environmental Chemical Engineering, 2021, 9, 105039.	6.7	41
10	Nitrate removal from aqueous solutions by adsorption onto hydrogelâ€rice husk biochar composite. Water Environment Research, 2020, 92, 934-947.	2.7	35
11	Semiâ€IPN carrageenanâ€based nanocomposite hydrogels: Synthesis and swelling behavior. Journal of Applied Polymer Science, 2010, 118, 2989-2997.	2.6	33
12	Copolymers of glycidyl methacrylate and octadecyl acrylate: synthesis, characterization, swelling properties, and reactivity ratios. Designed Monomers and Polymers, 2013, 16, 79-88.	1.6	33
13	Effect of hydrophobic monomer on the synthesis and swelling behaviour of a collagenâ€ <i>graft</i> â€poly[(acrylic acid)â€ <i>co</i> â€(sodium acrylate)] hydrogel. Polymer International, 2009, 58, 227-235.	3.1	31
14	Poly(acrylic acid–sodium styrene sulfonate) organogels: Preparation, characterization, and alcohol superabsorbency. Journal of Applied Polymer Science, 2011, 119, 2759-2769.	2.6	28
15	Effect of bis[2-(methacryloyloxy)ethyl] phosphate as a crosslinker on poly(AAm-co-AMPS)/Na-MMT hydrogel nanocomposite as potential adsorbent for dyes: kinetic, isotherm and thermodynamic study. Journal of Polymer Research, 2018, 25, 1.	2.4	28
16	Synthesis of an alginate–poly(sodium acrylate-co-acrylamide) superabsorbent hydrogel with low salt sensitivity and high pH sensitivity. Journal of Applied Polymer Science, 2006, 101, 2927-2937.	2.6	26
17	Swelling behavior of novel proteinâ€based superabsorbent nanocomposite. Journal of Applied Polymer Science, 2011, 120, 1170-1179.	2.6	25
18	HMF synthesis in aqueous and organic media under ultrasonication, microwave irradiation and conventional heating. Korean Journal of Chemical Engineering, 2016, 33, 1964-1970.	2.7	25

#	Article	IF	CITATIONS
19	Hydrogel with high laponite content as nanoclay: swelling and cationic dye adsorption properties. Research on Chemical Intermediates, 2015, 41, 7043-7058.	2.7	24
20	Synthesis and characterization of collagen-based hydrogel nanocomposites for adsorption of Cd2+, Pb2+, methylene green and crystal violet. Iranian Polymer Journal (English Edition), 2015, 24, 791-803.	2.4	23
21	Cross-Linked Poly(acrylic acid) Microgels from Precipitation Polymerization. Polymer-Plastics Technology and Engineering, 2010, 49, 1257-1264.	1.9	21
22	An investigation into novel multifunctional cross-linkers effect on microgel prepared by precipitation polymerization. Reactive and Functional Polymers, 2013, 73, 524-530.	4.1	19
23	Alcohophilic gels: Polymeric organogels composing carboxylic and sulfonic acid groups. Journal of Applied Polymer Science, 2011, 120, 3350-3356.	2.6	16
24	Gelatin-G-Poly(Sodium Acrylate-co-Acrylamide)/Kaolin Superabsorbent Hydrogel Composites: Synthesis, Characterisation and Swelling Behaviour. Polymers and Polymer Composites, 2007, 15, 395-402.	1.9	13
25	Rheological Properties of Microgel Prepared with Long-Chain Crosslinkers by a Precipitation Polymerization Method. Journal of Macromolecular Science - Physics, 2012, 51, 880-896.	1.0	9
26	One-pot synthesis of 3,4-dihydropyrimidin-2(1 <i>H</i>)-ones, thiones and 2-selenoxo DHPMs using 1-butyl-3-methylimidazolium hydrogen sulfate as non-halogenated ionic liquid. Phosphorus, Sulfur and Silicon and the Related Elements, 2021, 196, 54-60.	1.6	9
27	Microwave-induced Cannizzaro reaction over neutral Î ³ -alumina as a polymeric catalyst. Reactive and Functional Polymers, 2002, 51, 49-53.	4.1	8
28	Synthesis and Characterization of Phosphonic-Acrylic Organogels. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 430-437.	3.4	8
29	Carboxymethyl cellulose-based nanocomposite hydrogel grafted with vinylic comonomers: synthesis, swelling behavior and drug delivery investigation. Journal of Macromolecular Science - Pure and Applied Chemistry, 2022, 59, 421-432.	2.2	8
30	Synthesis and characterization of double network hydrogel based on gellan-gum for drug delivery. Journal of Macromolecular Science - Pure and Applied Chemistry, 2022, 59, 537-549.	2.2	8
31	Hydrogel-rice husk biochar composite as an adsorbent for the removal of phenol and PNP from aqueous solutions. Separation Science and Technology, 2021, 56, 1195-1210.	2.5	7
32	Preparation of Conjugated Enynes and Arylacetylenic Compounds from Arylalkynols using Alumina in Dry Media. Journal of Chemical Research, 2002, 2002, 552-555.	1.3	6
33	Release behavior of 2,4-dichlorophenoxyacetic acid herbicide using novel porous polyacrylamide hydrogels. E-Polymers, 2009, 9, .	3.0	1
34	Selective Synthesis of Conjugated Enynes from α-Arylalkynols Using LiCl-Acidic Al2O3 under Solvent-Free Conditions ChemInform, 2003, 34, no.	0.0	0
35	Preparation of Conjugated Enynes and Arylacetylenic Compounds from Arylalkynols Using Alumina in Dry Media ChemInform, 2003, 34, no.	0.0	0
36	Four-Component Synthesis of Functionalized 1,3,4-Oxadiazole Derivatives Bearing the 2-Amino benzothiazole Moiety. Heterocycles, 2021, 102, 1969.	0.7	0

#	Article	IF	CITATIONS
37	Solvent-free Dehydration of Alcohols using LiCl-acidic Alumina. Oriental Journal of Chemistry, 2012, 28, 1141-1145.	0.3	0