Kee Soo Ha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/839049/publications.pdf Version: 2024-02-01

KEE SOO HA

#	Article	IF	CITATIONS
1	A genome-wide association analysis reveals 1p31 and 2p13.3 as susceptibility loci for Kawasaki disease. Human Genetics, 2011, 129, 487-495.	3.8	79
2	A genome-wide association analysis identifies NMNAT2 and HCP5 as susceptibility loci for Kawasaki disease. Journal of Human Genetics, 2017, 62, 1023-1029.	2.3	40
3	Male-specific association of the FCGR2A His167Arg polymorphism with Kawasaki disease. PLoS ONE, 2017, 12, e0184248.	2.5	33
4	Laboratory Markers in Incomplete Kawasaki Disease according to Coronary Artery Outcome. Korean Circulation Journal, 2018, 48, 287.	1.9	17
5	Identification of the TIFAB Gene as a Susceptibility Locus for Coronary Artery Aneurysm in Patients with Kawasaki Disease. Pediatric Cardiology, 2019, 40, 483-488.	1.3	14
6	<i>BCL2L11</i> Is Associated With Kawasaki Disease in Intravenous Immunoglobulin Responder Patients. Circulation Genomic and Precision Medicine, 2018, 11, e002020.	3.6	12
7	lgA Levels Are Associated with Coronary Artery Lesions in Kawasaki Disease. Korean Circulation Journal, 2021, 51, 267.	1.9	12
8	Chronological Echocardiographic Changes in Healthy Term Neonates within Postnatal 72 Hours Using Doppler Studies. Journal of Korean Medical Science, 2018, 33, e155.	2.5	11
9	Cellular and RAS Changes in the Hearts of Young Obese Rats. Pediatric Cardiology, 2011, 32, 659-666.	1.3	10
10	Significance of Differential Characteristics in Infantile Kawasaki Disease. Korean Circulation Journal, 2019, 49, 755.	1.9	10
11	HLA-B*54:01 Is Associated With Susceptibility to Kawasaki Disease. Circulation Genomic and Precision Medicine, 2019, 12, e002365.	3.6	9
12	Identification of SAMD9L as a susceptibility locus for intravenous immunoglobulin resistance in Kawasaki disease by genome-wide association analysis. Pharmacogenomics Journal, 2020, 20, 80-86.	2.0	9
13	Prediction of intravenous immunoglobulin resistance in patients with Kawasaki disease according to the duration of illness prior to treatment. European Journal of Pediatrics, 2020, 179, 257-264.	2.7	9
14	A novel double snare technique to retrieve embolized septal and left atrial appendage occluders. Journal of Interventional Cardiology, 2018, 31, 685-692.	1.2	7
15	Assessment of the Clinical Heterogeneity of Kawasaki Disease Using Genetic Variants of <i>BLK</i> and <i>FCGR2A</i> . Korean Circulation Journal, 2019, 49, 99.	1.9	6
16	Characterization of Flow Efficiency, Pulsatility, and Respiratory Variability in Different Types of Fontan Circuits Using Quantitative Parameters. Yonsei Medical Journal, 2019, 60, 56.	2.2	5
17	The Risk Prediction of Coronary Artery Lesions through the Novel Hematological Z-Values in 4 Chronological Age Subgroups of Kawasaki Disease. Medicina (Lithuania), 2020, 56, 466.	2.0	4
18	Identification of LEF1 as a Susceptibility Locus for Kawasaki Disease in Patients Younger than 6 Months of Age. Genomics and Informatics, 2018, 16, 36-41.	0.8	4

KEE SOO HA

#	Article	IF	CITATIONS
19	Association of the IL16 Asn1147Lys polymorphism with intravenous immunoglobulin resistance in Kawasaki disease. Journal of Human Genetics, 2020, 65, 421-426.	2.3	3
20	Self-Expandable Stents in Vascular Stenosis of Moderate to Large-Sized Vessels in Congenital Heart Disease: Early and Intermediate-Term Results. Korean Circulation Journal, 2019, 49, 932.	1.9	3
21	Identification of rare coding variants associated with Kawasaki disease by whole exome sequencing. Genomics and Informatics, 2021, 19, e38.	0.8	3
22	Impact of Flow Differentials According to Cardiac and Respiratory Cycles on Three Types of Fontan Operation. Pediatric Cardiology, 2018, 39, 1144-1155.	1.3	2
23	Papillary Thyroid Cancer Tumor Spheres Cultured by Passaging Without Sorting Exhibit Cancer Stemness. Anticancer Research, 2020, 40, 3801-3809.	1.1	2
24	Neonatal Diaphragmatic Hemangioma associated with Diffuse Neonatal Hemangiomatosis treated with Coil Embolization. Perinatology, 2017, 28, 177.	0.1	0
25	Which Patients With Newly Diagnosed Breast Cancer Benefit From Preoperative Magnetic Resonance Imaging?. International Surgery, 2021, 105, 576-584.	0.1	0
26	Perforation of azygos vein and right-sided hydrothorax caused by peripherally inserted central catheter in extremely low birth weight infant. Korean Journal of Pediatrics, 2006, 49, 902.	1.9	0