Yanliang He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8390446/publications.pdf

Version: 2024-02-01

567281 552781 41 726 15 26 citations h-index g-index papers 41 41 41 567 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Diffractive Deep Neural Network for Optical Orbital Angular Momentum Multiplexing and Demultiplexing. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-11.	2.9	18
2	Convolutional Neural Network to Identify Cylindrical Vector Beam Modes. IEEE Journal of Quantum Electronics, 2022, 58, 1-11.	1.9	2
3	Spatial phase retrieval of vortex beam using convolutional neural network. Journal of Optics (United) Tj ETQq $1\ 1$	0.784314 2.2	rgBT Overloo
4	Orbital angular momentum deep multiplexing holography via an optical diffractive neural network. Optics Express, 2022, 30, 5569.	3.4	16
5	Recognition of fractional orbital angular momentum modes under scattering with transmission matrix. Optics Communications, 2022, 515, 128165.	2.1	1
6	Generation of hollow Gaussian beams by restoring structured light with meta-optics. Optics and Laser Technology, 2022, 153, 108197.	4.6	0
7	Dielectric metasurface based polarization and orbital angular momentum demultiplexer. Results in Physics, 2021, 20, 103706.	4.1	7
8	All-Optical Signal Processing of Vortex Beams with Diffractive Deep Neural Networks. Physical Review Applied, 2021, 15, .	3.8	64
9	Broadband Structured Light Multiplexing With Dielectric Meta-Optics. Journal of Lightwave Technology, 2021, 39, 2830-2836.	4.6	7
10	Orbital angular momentum mode logical operation using optical diffractive neural network. Photonics Research, 2021, 9, 2116.	7.0	33
11	Metasurface Based Optical Orbital Angular Momentum Multiplexing for 100 GHz Radio Over Fiber Communication. Journal of Lightwave Technology, 2021, 39, 6159-6166.	4.6	10
12	Optical diffractive deep neural network-based orbital angular momentum mode add–drop multiplexer. Optics Express, 2021, 29, 36936.	3.4	9
13	Cylindrical vector beam sorter with spin-dependent spiral transformation. Optics Letters, 2021, 46, 5563.	3.3	5
14	Cylindrical vector beam multiplexer/demultiplexer using off-axis polarization control. Light: Science and Applications, 2021, 10, 222.	16.6	60
15	Identification of optical orbital angular momentum modes with the Kerr nonlinearity of few-layer WS ₂ . 2D Materials, 2020, 7, 025012.	4.4	8
16	All-Optical Signal Processing in Structured Light Multiplexing with Dielectric Meta-Optics. ACS Photonics, 2020, 7, 135-146.	6.6	46
17	Generation of arbitrary cylindrical vector vortex beams with cross-polarized modulation. Results in Physics, 2020, 19, 103455.	4.1	22
18	Convolutional Neural Network Based Atmospheric Turbulence Compensation for Optical Orbital Angular Momentum Multiplexing. Journal of Lightwave Technology, 2020, 38, 1712-1721.	4.6	36

#	Article	IF	CITATIONS
19	Controllable photonic spin Hall effect with phase function construction. Photonics Research, 2020, 8, 963.	7.0	29
20	Arbitrary Cylindrical Vector Beam Generation Using Cross-Polarized Modulation. IEEE Photonics Technology Letters, 2019, 31, 873-876.	2.5	3
21	Effectively Identifying the Topological Charge and Polarization Order of Arbitrary Singular Light Beams Based on Orthogonal Polarization Separating. IEEE Photonics Journal, 2019, 11, 1-8.	2.0	1
22	Optical Orbital Angular Momentum Shift-Keying Communication Using Direct Demodulation. IEEE Access, 2019, 7, 103433-103442.	4.2	4
23	Detecting Orbital Angular Momentum Modes of Vortex Beams Using Feed-Forward Neural Network. Journal of Lightwave Technology, 2019, 37, 5848-5855.	4.6	24
24	Orbital angular momentum modes identification of optical vortices using binaural circular aperture. Journal of Optics (United Kingdom), 2019, 21, 065603.	2.2	8
25	Optical orbital angular momentum shift-keying communication based on coherent demodulation. Optics Communications, 2019, 452, 405-410.	2.1	6
26	Convolutional Neural Network-Assisted Optical Orbital Angular Momentum Recognition and Communication. IEEE Access, 2019, 7, 162025-162035.	4.2	24
27	Identification of hybrid orbital angular momentum modes with deep feedforward neural network. Results in Physics, 2019, 15, 102790.	4.1	16
28	Complex Inverse Design of Meta-optics by Segmented Hierarchical Evolutionary Algorithm. ACS Nano, 2019, 13, 821-829.	14.6	40
29	Modes coded modulation of vector light beams using spatial phase cross-polarized modulation. Optics Communications, 2019, 432, 59-64.	2.1	5
30	Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication. Optics Express, 2019, 27, 16671.	3.4	96
31	Spatial phase and polarization retrieval of arbitrary circular symmetry singular light beams using orthogonal polarization separation. Optics Express, 2019, 27, 27282.	3.4	9
32	Black phosphorus: broadband nonlinear optical absorption and application. Laser Physics Letters, 2018, 15, 025301.	1.4	27
33	A full-duplex 100-GHz radio-over-fiber communication system based on frequency quadrupling. Optik, 2018, 175, 148-153.	2.9	8
34	Coherent Separation Detection for Orbital Angular Momentum Multiplexing in Free-Space Optical Communications. IEEE Photonics Journal, 2017, 9, 1-11.	2.0	10
35	Order-Controllable Cylindrical Vector Vortex Beam Generation by Using Spatial Light Modulator and Cascaded Metasurfaces. IEEE Photonics Journal, 2017, 9, 1-10.	2.0	29
36	Switchable phase and polarization singular beams generation using dielectric metasurfaces. Scientific Reports, 2017, 7, 6814.	3.3	31

YANLIANG HE

#	Article	IF	CITATIONS
37	Independently detect the spiral phase of cylindrical vector vortex beams. , 2017, , .		2
38	Generating fast switchable optical vortices by beam combining. , 2017, , .		0
39	Optical Orbital Angular Momentum Demultiplexing and Channel Equalization by Using Equalizing Dammann Vortex Grating. Advances in Condensed Matter Physics, 2017, 2017, 1-9.	1.1	1
40	Submicrosecond Q-Switching Er-Doped All-Fiber Ring Laser Based on Black Phosphorus. Advances in Condensed Matter Physics, 2017, 2017, 1-4.	1.1	4
41	Effective Generation of Milliwatt-Level Sub-Terahertz Wave for Nonlinear Response Measurement of Two-Dimensional Material by Optical Heterodyne Technique. Advances in Condensed Matter Physics, 2017, 2017, 1-9.	1.1	3