
Luigi Angelo Castriotta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8390359/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A universal co-solvent dilution strategy enables facile and cost-effective fabrication of perovskite photovoltaics. Nature Communications, 2022, 13, 89.	5.8	77
2	Reducing Losses in Perovskite Large Area Solar Technology: Laser Design Optimization for Highly Efficient Modules and Minipanels. Advanced Energy Materials, 2022, 12, .	10.2	24
3	Hysteresisâ€Free Planar Perovskite Solar Module with 19.1% Efficiency by Interfacial Defects Passivation. Solar Rrl, 2022, 6, .	3.1	9
4	An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles. Nature Energy, 2022, 7, 107-115.	19.8	136
5	Wide bandgap halide perovskite absorbers for semi-transparent photovoltaics: From theoretical design to modules. Nano Energy, 2022, 101, 107560.	8.2	12
6	Beyond 17% stable perovskite solar module via polaron arrangement of tuned polymeric hole transport layer. Nano Energy, 2021, 82, 105685.	8.2	28
7	Air-Processed Infrared-Annealed Printed Methylammonium-Free Perovskite Solar Cells and Modules Incorporating Potassium-Doped Graphene Oxide as an Interlayer. ACS Applied Materials & Interfaces, 2021, 13, 11741-11754.	4.0	45
8	Ambient Air Bladeâ€Coating Fabrication of Stable Tripleâ€Cation Perovskite Solar Modules by Green Solvent Quenching. Solar Rrl, 2021, 5, 2100073.	3.1	34
9	Laser-Scribing Optimization for Sprayed SnO ₂ -Based Perovskite Solar Modules on Flexible Plastic Substrates. ACS Applied Energy Materials, 2021, 4, 4507-4518.	2.5	31
10	Light-Stable Methylammonium-Free Inverted Flexible Perovskite Solar Modules on PET Exceeding 10.5% on a 15.7 cm ² Active Area. ACS Applied Materials & Interfaces, 2021, 13, 29576-29584.	4.0	22
11	Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9, .	2.2	102
12	New Fullerene Derivative as an nâ€Type Material for Highly Efficient, Flexible Perovskite Solar Cells of a pâ€iâ€n Configuration. Advanced Functional Materials, 2020, 30, 2004357.	7.8	38
13	Upscaling Inverted Perovskite Solar Cells: Optimization of Laser Scribing for Highly Efficient Mini-Modules. Micromachines, 2020, 11, 1127.	1.4	42
14	An Interlaboratory Study on the Stability of Allâ€Printable Hole Transport Material–Free Perovskite Solar Cells. Energy Technology, 2020, 8, 2000134.	1.8	18
15	Improved Stability of Inverted and Flexible Perovskite Solar Cells with Carbon Electrode. ACS Applied Energy Materials, 2020, 3, 5126-5134.	2.5	95
16	Metal-semiconductor transition in thin film MAPbI3 perovskite. Applied Physics Letters, 2020, 117, 261901.	1.5	5
17	Semi-transparent triple cation Perovskite solar module exceeding 8% efficiency for BIPV applications. , 2020, , .		2
18	Doping Strategy for Efficient and Stable Triple Cation Hybrid Perovskite Solar Cells and Module Based on Poly(3â€hexylthiophene) Hole Transport Layer. Small, 2019, 15, e1904399.	5.2	55

#	Article	IF	CITATIONS
19	Fabrication and Morphological Characterization of High-Efficiency Blade-Coated Perovskite Solar Modules. ACS Applied Materials & Interfaces, 2019, 11, 25195-25204.	4.0	53
20	Large area perovskite solar modules with improved efficiency and stability. , 2019, , .		5
21	Upscaling Inverted Perovskite Solar Cells: n-side passivation for 10 cm2 minimodules with 18.1% efficiency. , 0, , .		0
22	Efficient and stable triple-cation perovskite solar modules by an industry-compatible coating method. , 0, , .		0
23	Scaling Up of Perovskite Solar Modules: from materials to design optimization. , 0, , .		0
24	High Efficiency High Stable Large Area Perovskite Solar Module Including 2D Strategy and Polymeric Hole Transport Material. , 0, , .		1
25	Halide perovskite modules and panels. , 0, , .		0
26	Interfacial Defects Passivation of High Efficiency Perovskite Solar Modules. , 0, , .		1
27	Introducing Organic Interlayer over Self Assembled Monolayers: Boosting Stability of Solution Processable P-I-N based Perovskite Solar Cells with nearly 20% efficiency. , 0, , .		0
28	Flexible Perovskite Solar Cells for indoor photovoltaics with efficiency up to 31% using metal and carbon electrodes. , 0, , .		0
29	Flexible Blade-coated Perovskite Solar Cells with a Non-hazardous Solvent System Fabricated in Ambient Air. , 0, , .		0
30	Perovskite Technology Scaling Up From 32 cm2 to 320 cm2 Module by Fully Ambient Air Meniscus Coating Processes. , 0, , .		0